Skip to main content

Estimate cell state dynamics with fluctuation

Project description

vicdyf: Variational Inference of Cell state Dynamics with fluctuation

vicdyf is intended to estimated cell state dynamics with fluctuation from spliced and unspliced transcript abundance.

Instalation

You can install vicdyf using pip command from your shell.

pip install vicdyf

Usage

You need to prepare an AnnData object which includes raw spliced and unspliced counts as layers named as spliced and unspliced like a scvelo data set. Apply vicdyf workflow on the object:

import vicdyf
adata = vicdyf.workflow.estimate_dynamics(adata)

vicdyf.workflow.estimate_dynamics have optional parameters as below:

  • use_genes: gene names for dynamics estimation (default: None)
  • first_epoch: number of epochs for deriving latent representation (default: 500)
  • second_epoch: number of epochs for optimizing dynamics (default: 500)
  • param_path: a path where the optimized parameters of vicdyf.modules.VicDyfare stored (default: .vicdyf_opt_pt)
  • lr: Learning rate for Adam optimizer of pytorch
  • batch_size: Size of mini batches in the optimization procedure
  • num_workers: Number of workers in data loader of pytorch
  • val_ratio: proportion of validation data set
  • test_ratio: proportion of test data set
  • model_params: a dictionary which describe the configuration of vicdyf.modules.VicDyf. The keys of the dictionary is as below:
    • z_dim: dimension of latent representation (default 10)
    • enc_z_h_dim: dimension of hidden units in encoder layers (default 50)
    • enc_d_h_dim: dimension of hidden units in dynamics encoder layers (default 50)
    • dec_z_h_dim: dimension of hidden units in encoder layers (default 50)
    • num_enc_z_layers: the layer number of the encoder (default 2)
    • num_enc_z_layers: the layer number of the dynamics encoder (default 2)
    • num_dec_z_layers: the layer number of the decoder (default 2)

Here, the AnnData object acuires sevral elements in layers, obsm, obsp and obs.

  • layers:
    • vicdyf_expression: Expected gene expression level
    • vicdyf_mean_velocity: Expected gene expression change
    • vicdyf_velocity: Stochasticaly sampled gene expression change
    • vicdyf_fluctuation: Fluctuation level for each gene
  • obsm:
    • X_vicdyf_z: Stochasticaly smapled latent representation
    • X_vicdyf_zl: Expected latent representation
    • X_vicdyf_d: Stochasticaly smapled changes of latent representation
    • X_vicdyf_dl: Expected changes of latent representation
    • X_vicdyf_umap: 2D UMAP embeddings of expected latent representation for visualization
    • X_vicdyf_sdumap: 2D UMAP embeddings of X_vicdyf_d for visualization
    • X_vicdyf_mdumap: 2D UMAP embeddings of X_vicdyf_dl for visualization

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vicdyf-tiisaishima-0.0.2.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

vicdyf_tiisaishima-0.0.2-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file vicdyf-tiisaishima-0.0.2.tar.gz.

File metadata

  • Download URL: vicdyf-tiisaishima-0.0.2.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for vicdyf-tiisaishima-0.0.2.tar.gz
Algorithm Hash digest
SHA256 c2f44695d51c4a44ef60c5ad51a5c5bf9f24fab55b9413683a21d2cd33d93029
MD5 8056a601a0ffd80ed25a0fa4aa6f939f
BLAKE2b-256 c08f7c470bbdfc52ed2d900f95a9b9ffb473119f55c205458d53f803b237c33b

See more details on using hashes here.

File details

Details for the file vicdyf_tiisaishima-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: vicdyf_tiisaishima-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for vicdyf_tiisaishima-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d49c4a2b5ce5f3ea2fc88e1a2dbeac9f20108adc0881b2d4cfc4e21cf6ab9c05
MD5 5812fb820d988064460414c0ac1bfab4
BLAKE2b-256 18c15ca3ba0de04fe60b5173fae0e111d42a0515bb7f7d1198969e5fb3c17f1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page