Skip to main content

Estimate cell state dynamics with fluctuation

Project description

vicdyf: Variational Inference of Cell state Dynamics with fluctuation

vicdyf is intended to estimated cell state dynamics with fluctuation from spliced and unspliced transcript abundance.

Instalation

You can install vicdyf using pip command from your shell.

pip install vicdyf

Usage

You need to prepare an AnnData object which includes raw spliced and unspliced counts as layers named as spliced and unspliced like a scvelo data set. Apply vicdyf workflow on the object:

import vicdyf
adata = vicdyf.workflow.estimate_dynamics(adata)

vicdyf.workflow.estimate_dynamics have optional parameters as below:

  • use_genes: gene names for dynamics estimation (default: None)
  • first_epoch: number of epochs for deriving latent representation (default: 500)
  • second_epoch: number of epochs for optimizing dynamics (default: 500)
  • param_path: a path where the optimized parameters of vicdyf.modules.VicDyfare stored (default: .vicdyf_opt_pt)
  • lr: Learning rate for Adam optimizer of pytorch
  • batch_size: Size of mini batches in the optimization procedure
  • num_workers: Number of workers in data loader of pytorch
  • val_ratio: proportion of validation data set
  • test_ratio: proportion of test data set
  • model_params: a dictionary which describe the configuration of vicdyf.modules.VicDyf. The keys of the dictionary is as below:
    • z_dim: dimension of latent representation (default 10)
    • enc_z_h_dim: dimension of hidden units in encoder layers (default 50)
    • enc_d_h_dim: dimension of hidden units in dynamics encoder layers (default 50)
    • dec_z_h_dim: dimension of hidden units in encoder layers (default 50)
    • num_enc_z_layers: the layer number of the encoder (default 2)
    • num_enc_z_layers: the layer number of the dynamics encoder (default 2)
    • num_dec_z_layers: the layer number of the decoder (default 2)

Here, the AnnData object acuires sevral elements in layers, obsm, obsp and obs.

  • layers:
    • vicdyf_expression: Expected gene expression level
    • vicdyf_mean_velocity: Expected gene expression change
    • vicdyf_velocity: Stochasticaly sampled gene expression change
    • vicdyf_fluctuation: Fluctuation level for each gene
  • obsm:
    • X_vicdyf_z: Stochasticaly smapled latent representation
    • X_vicdyf_zl: Expected latent representation
    • X_vicdyf_d: Stochasticaly smapled changes of latent representation
    • X_vicdyf_dl: Expected changes of latent representation
    • X_vicdyf_umap: 2D UMAP embeddings of expected latent representation for visualization
    • X_vicdyf_sdumap: 2D UMAP embeddings of X_vicdyf_d for visualization
    • X_vicdyf_mdumap: 2D UMAP embeddings of X_vicdyf_dl for visualization

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vicdyf-0.0.1.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

vicdyf-0.0.1-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file vicdyf-0.0.1.tar.gz.

File metadata

  • Download URL: vicdyf-0.0.1.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for vicdyf-0.0.1.tar.gz
Algorithm Hash digest
SHA256 585559ccffa0d74f2371cfd297ee604f56c2b56191f8e62ff90f38f401963e55
MD5 423ce7a262603fa14c41a414ec97369b
BLAKE2b-256 1d3f4f96de42b1f430528c7351640f542abd7405d51cd5cd46a286339e23c16c

See more details on using hashes here.

File details

Details for the file vicdyf-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: vicdyf-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for vicdyf-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 da696f3c4a5bd2aad060f685abb29c0927734ff0cb69e003f7f836a941390f99
MD5 c3ed7f77d6e7744f22c0723c82e7d212
BLAKE2b-256 9d709b5f8d211fd2795602afbfb008b40d745818b90ac53426455d1232d23c01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page