Skip to main content

Estimate cell state dynamics with fluctuation

Project description

vicdyf: Variational Inference of Cell state Dynamics with fluctuation

vicdyf is intended to estimated cell state dynamics with fluctuation from spliced and unspliced transcript abundance.

Instalation

You can install vicdyf using pip command from your shell.

pip install vicdyf

Usage

You need to prepare an AnnData object which includes raw spliced and unspliced counts as layers named as spliced and unspliced like a scvelo data set. Apply vicdyf workflow on the object:

import vicdyf
adata = vicdyf.workflow.estimate_dynamics(adata)

vicdyf.workflow.estimate_dynamics have optional parameters as below:

  • use_genes: gene names for dynamics estimation (default: None)
  • first_epoch: number of epochs for deriving latent representation (default: 500)
  • second_epoch: number of epochs for optimizing dynamics (default: 500)
  • param_path: a path where the optimized parameters of vicdyf.modules.VicDyfare stored (default: .vicdyf_opt_pt)
  • lr: Learning rate for Adam optimizer of pytorch
  • batch_size: Size of mini batches in the optimization procedure
  • num_workers: Number of workers in data loader of pytorch
  • val_ratio: proportion of validation data set
  • test_ratio: proportion of test data set
  • model_params: a dictionary which describe the configuration of vicdyf.modules.VicDyf. The keys of the dictionary is as below:
    • z_dim: dimension of latent representation (default 10)
    • enc_z_h_dim: dimension of hidden units in encoder layers (default 50)
    • enc_d_h_dim: dimension of hidden units in dynamics encoder layers (default 50)
    • dec_z_h_dim: dimension of hidden units in encoder layers (default 50)
    • num_enc_z_layers: the layer number of the encoder (default 2)
    • num_enc_z_layers: the layer number of the dynamics encoder (default 2)
    • num_dec_z_layers: the layer number of the decoder (default 2)

Here, the AnnData object acuires sevral elements in layers, obsm, obsp and obs.

  • layers:
    • vicdyf_expression: Expected gene expression level
    • vicdyf_mean_velocity: Expected gene expression change
    • vicdyf_velocity: Stochasticaly sampled gene expression change
    • vicdyf_fluctuation: Fluctuation level for each gene
  • obsm:
    • X_vicdyf_z: Stochasticaly smapled latent representation
    • X_vicdyf_zl: Expected latent representation
    • X_vicdyf_d: Stochasticaly smapled changes of latent representation
    • X_vicdyf_dl: Expected changes of latent representation
    • X_vicdyf_umap: 2D UMAP embeddings of expected latent representation for visualization
    • X_vicdyf_sdumap: 2D UMAP embeddings of X_vicdyf_d for visualization
    • X_vicdyf_mdumap: 2D UMAP embeddings of X_vicdyf_dl for visualization

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vicdyf-0.0.7.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

vicdyf-0.0.7-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file vicdyf-0.0.7.tar.gz.

File metadata

  • Download URL: vicdyf-0.0.7.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for vicdyf-0.0.7.tar.gz
Algorithm Hash digest
SHA256 28f3857631d18154857e11649099344af071c00c00145565b46b75af0da0e149
MD5 d0786f16396aab4a4b20b236b135b80e
BLAKE2b-256 ec4158e5a4a6f0e1b17818c870efcc1f07dacc4347bf81b74934c9f821c15535

See more details on using hashes here.

File details

Details for the file vicdyf-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: vicdyf-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for vicdyf-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 b8f8a01d51ea6a7aa1432a3bb02ab83d2eae872d303fde0950d1388907eedda8
MD5 c48372aa6964e559c77cd9c0fbba8666
BLAKE2b-256 2403c1fc533b41d680b651fa2ef329128e46b225ef501051612a467cd9227f0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page