Skip to main content

Easiest way of fine-tuning HuggingFace video classification models.

Project description

Easiest way of fine-tuning HuggingFace video classification models.

pypi version total downloads fcakyon twitter

🚀 Features

video-transformers uses:

and supports:

🏁 Installation

  • Install Pytorch:
conda install pytorch=1.11.0 torchvision=0.12.0 cudatoolkit=11.3 -c pytorch
  • Install pytorchvideo and transformers from main branch:
pip install git+https://github.com/facebookresearch/pytorchvideo.git
pip install git+https://github.com/huggingface/transformers.git
  • Install video-transformers:
pip install video-transformers

🔥 Usage

  • Prepare video classification dataset in such folder structure (.avi and .mp4 extensions are supported):
train_root
    label_1
        video_1
        video_2
        ...
    label_2
        video_1
        video_2
        ...
    ...
val_root
    label_1
        video_1
        video_2
        ...
    label_2
        video_1
        video_2
        ...
    ...
  • Fine-tune Timesformer (from HuggingFace) video classifier:
from torch.optim import AdamW
from video_transformers import VideoModel
from video_transformers.backbones.transformers import TransformersBackbone
from video_transformers.data import VideoDataModule
from video_transformers.heads import LinearHead
from video_transformers.trainer import trainer_factory
from video_transformers.utils.file import download_ucf6

backbone = TransformersBackbone("facebook/timesformer-base-finetuned-k400", num_unfrozen_stages=1)

download_ucf6("./")
datamodule = VideoDataModule(
    train_root="ucf6/train",
    val_root="ucf6/val",
    batch_size=4,
    num_workers=4,
    num_timesteps=8,
    preprocess_input_size=224,
    preprocess_clip_duration=1,
    preprocess_means=backbone.mean,
    preprocess_stds=backbone.std,
    preprocess_min_short_side=256,
    preprocess_max_short_side=320,
    preprocess_horizontal_flip_p=0.5,
)

head = LinearHead(hidden_size=backbone.num_features, num_classes=datamodule.num_classes)
model = VideoModel(backbone, head)

optimizer = AdamW(model.parameters(), lr=1e-4)

Trainer = trainer_factory("single_label_classification")
trainer = Trainer(datamodule, model, optimizer=optimizer, max_epochs=8)

trainer.fit()
  • Fine-tune ConvNeXT (from HuggingFace) + Transformer based video classifier:
from torch.optim import AdamW
from video_transformers import TimeDistributed, VideoModel
from video_transformers.backbones.transformers import TransformersBackbone
from video_transformers.data import VideoDataModule
from video_transformers.heads import LinearHead
from video_transformers.necks import TransformerNeck
from video_transformers.trainer import trainer_factory
from video_transformers.utils.file import download_ucf6

backbone = TimeDistributed(TransformersBackbone("facebook/convnext-small-224", num_unfrozen_stages=1))
neck = TransformerNeck(
    num_features=backbone.num_features,
    num_timesteps=8,
    transformer_enc_num_heads=4,
    transformer_enc_num_layers=2,
    dropout_p=0.1,
)

download_ucf6("./")
datamodule = VideoDataModule(
    train_root="ucf6/train",
    val_root="ucf6/val",
    batch_size=4,
    num_workers=4,
    num_timesteps=8,
    preprocess_input_size=224,
    preprocess_clip_duration=1,
    preprocess_means=backbone.mean,
    preprocess_stds=backbone.std,
    preprocess_min_short_side=256,
    preprocess_max_short_side=320,
    preprocess_horizontal_flip_p=0.5,
)

head = LinearHead(hidden_size=neck.num_features, num_classes=datamodule.num_classes)
model = VideoModel(backbone, head, neck)

optimizer = AdamW(model.parameters(), lr=1e-4)

Trainer = trainer_factory("single_label_classification")
trainer = Trainer(
    datamodule,
    model,
    optimizer=optimizer,
    max_epochs=8
)

trainer.fit()
  • Fine-tune Resnet18 (from HuggingFace) + GRU based video classifier:
from video_transformers import TimeDistributed, VideoModel
from video_transformers.backbones.transformers import TransformersBackbone
from video_transformers.data import VideoDataModule
from video_transformers.heads import LinearHead
from video_transformers.necks import GRUNeck
from video_transformers.trainer import trainer_factory
from video_transformers.utils.file import download_ucf6

backbone = TimeDistributed(TransformersBackbone("microsoft/resnet-18", num_unfrozen_stages=1))
neck = GRUNeck(num_features=backbone.num_features, hidden_size=128, num_layers=2, return_last=True)

download_ucf6("./")
datamodule = VideoDataModule(
    train_root="ucf6/train",
    val_root="ucf6/val",
    batch_size=4,
    num_workers=4,
    num_timesteps=8,
    preprocess_input_size=224,
    preprocess_clip_duration=1,
    preprocess_means=backbone.mean,
    preprocess_stds=backbone.std,
    preprocess_min_short_side=256,
    preprocess_max_short_side=320,
    preprocess_horizontal_flip_p=0.5,
)

head = LinearHead(hidden_size=neck.hidden_size, num_classes=datamodule.num_classes)
model = VideoModel(backbone, head, neck)

Trainer = trainer_factory("single_label_classification")
trainer = Trainer(
    datamodule,
    model,
    max_epochs=8
)

trainer.fit()
  • Perform prediction for a single file or folder of videos:
from video_transformers import VideoModel

model = VideoModel.from_pretrained(model_name_or_path)

model.predict(video_or_folder_path="video.mp4")
>> [{'filename': "video.mp4", 'predictions': {'class1': 0.98, 'class2': 0.02}}]

🤗 Full HuggingFace Integration

  • Push your fine-tuned model to the hub:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")

model.push_to_hub('model_name')
  • Load any pretrained video-transformer model from the hub:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")

model.from_pretrained('account_name/model_name')
  • Push your model to HuggingFace hub with auto-generated model-cards:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")
model.push_to_hub('account_name/app_name')
  • (Incoming feature) Push your model as a Gradio app to HuggingFace Space:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")
model.push_to_space('account_name/app_name')

📈 Multiple tracker support

  • Tensorboard tracker is enabled by default.

  • To add Neptune/Layer ... tracking:

from video_transformers.tracking import NeptuneTracker
from accelerate.tracking import WandBTracker

trackers = [
    NeptuneTracker(EXPERIMENT_NAME, api_token=NEPTUNE_API_TOKEN, project=NEPTUNE_PROJECT),
    WandBTracker(project_name=WANDB_PROJECT)
]

trainer = Trainer(
    datamodule,
    model,
    trackers=trackers
)

🕸️ ONNX support

  • Convert your trained models into ONNX format for deployment:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")
model.to_onnx(quantize=False, opset_version=12, export_dir="runs/exports/", export_filename="model.onnx")

🤗 Gradio support

  • Convert your trained models into Gradio App for deployment:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")
model.to_gradio(examples=['video.mp4'], export_dir="runs/exports/", export_filename="app.py")

Contributing

Before opening a PR:

  • Install required development packages:
pip install -e ."[dev]"
  • Reformat with black and isort:
python -m tests.run_code_style format

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

video-transformers-0.0.8.tar.gz (37.5 kB view details)

Uploaded Source

Built Distribution

video_transformers-0.0.8-py3-none-any.whl (46.0 kB view details)

Uploaded Python 3

File details

Details for the file video-transformers-0.0.8.tar.gz.

File metadata

  • Download URL: video-transformers-0.0.8.tar.gz
  • Upload date:
  • Size: 37.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for video-transformers-0.0.8.tar.gz
Algorithm Hash digest
SHA256 41326c7d193ff9973ac0f28f685cb1692e1be14786926350744cba2bba0f099f
MD5 7613eca8270850097eea76809de465bc
BLAKE2b-256 2bd79056e34d5e12f79f2dff29d9e016f1199083fbafd9a0243bda69d8e887e9

See more details on using hashes here.

File details

Details for the file video_transformers-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for video_transformers-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 cc410326642d11155f68085cc6653b8483178c3e034bf71af89466f3381d9af1
MD5 1d587a9268a23e7a802ab659f1f0a0d2
BLAKE2b-256 4d28f738193a421bb92202e4175bb2c2cfb52a9a61ccaf2614aaac7ff6542b13

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page