Module for saving and loading images and depth as H.264 video
Project description
videoio: save/load image sequence as H.264 video
A small Python module for saving and loading RGB and uint16 (depth) frames as H.264 encoded video
Prerequisites
ffmpeg>=2.1
with libx264 enabled- If you are using conda, you can install the correct version with
conda remove ffmpeg
andconda install ffmpeg x264 -c conda-forge
- If you are using conda, you can install the correct version with
ffprobe
(usually comes with ffmpeg)
Quickstart
Save/load RGB frames:
import numpy as np
from videoio import videosave, videoread
frames = np.random.random((20, 200, 400, 3)) # [framesNr, height, width, RGB]
# Save to video
videosave("out.mp4", frames)
# Load from video
frames = videoread("out.mp4")
Read frames sequentially:
from videoio import VideoReader
for frame in VideoReader("in.mp4"):
do_something_with(frame)
Write frames sequentially:
from videoio import VideoWriter
writer = VideoWriter("out.mp4", resolution=(400, 200)) # [width, height]
for i in range(100):
frame = get_frame()
writer.write(frame)
writer.close()
or
with VideoWriter("out.mp4", resolution=(400, 200)) as writer:
for i in range(100):
frame = get_frame()
writer.write(frame)
Lossless write/read of uint16 3D arrays (useful for saving depth frames stored in mm, for example Kinect data):
import numpy as np
from videoio import uint16save, uint16read
# Generate 20 random depth frames
depth_frames = (np.random.random((20, 200, 400)) * 65535).astype(np.uint16)
# Save
uint16save("out_depth.mp4", depth_frames)
# Load
depth_frames = uint16read("out_depth.mp4")
Save RGB frames in lossless mode with different compression preset and different FPS:
videosave("out.mp4", frames, lossless=True, preset="veryfast", fps=10.5)
Read RGB frames and scale them to target resolution simultaneously:
frames = videoread("in.mp4", output_resolution=(100, 250))
Read video/uint16-array starting from certain frame:
(Works if the input video was created by videoio, other cases are not guaranteed)
frames = videoread("in.mp4", start_frame=100)
for frame in VideoReader("in.mp4", start_frame=100):
do_something_with(frame)
Installation
From pip:
pip install videoio
From source:
git clone https://github.com/vguzov/videoio.git
python setup.py install
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
videoio-0.3.0.tar.gz
(12.2 kB
view details)
Built Distribution
videoio-0.3.0-py3-none-any.whl
(13.6 kB
view details)
File details
Details for the file videoio-0.3.0.tar.gz
.
File metadata
- Download URL: videoio-0.3.0.tar.gz
- Upload date:
- Size: 12.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff006088c9dc5bdd7ea73a7317177d0c3e67033114f68711a43d0b66bfc0e492 |
|
MD5 | 70231777492623d67db7a6b7fb93f65f |
|
BLAKE2b-256 | 078b3e53eca0ef2bfe1772a153fcf3c15cef556e98ee3e2c422985d07d44d499 |
File details
Details for the file videoio-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: videoio-0.3.0-py3-none-any.whl
- Upload date:
- Size: 13.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ff628fbdddb67931d36ca7557205c632fba09cd96494294e936122b4fd29201 |
|
MD5 | 70b8697d501854ff7473c00ed4c63f87 |
|
BLAKE2b-256 | 2da5ea290cc888a6114868081491981bec03a6261a5e22fdabdcb89ed5a97da2 |