Video Stabilization using OpenCV
Project description
Python Video Stabilization <img src=https://github.com/AdamSpannbauer/python_video_stab/blob/master/readme/vidstab_logo.png?raw=true width=125 align='right'/>
Python video stabilization using OpenCV.
This module contains a single class (VidStab
) used for video stabilization. This class is based on the work presented by Nghia Ho in SIMPLE VIDEO STABILIZATION USING OPENCV. The foundation code was found in a comment on Nghia Ho's post by the commenter with username koala.
Input | Output |
---|---|
Installation
+ Please report issues if you install/try to install and run into problems!
Install vidstab
without installing OpenCV
If you've already built OpenCV with python bindings on your machine it is recommended to install vidstab
without installing the pypi versions of OpenCV. The opencv-python
python module can cause issues if you've already built OpenCV from source in your environment.
The below commands will install vidstab
without OpenCV included.
From PyPi
pip install vidstab
From Github
pip install git+https://github.com/AdamSpannbauer/python_video_stab.git
Install vidstab
& OpenCV
If you don't have OpenCV installed already there are a couple options.
- You can build OpenCV using one of the great online tutorials from PyImageSearch, LearnOpenCV, or OpenCV themselves. When building from source you have more options (e.g. platform optimization), but more responsibility. Once installed you can use the pip install command shown above.
- You can install a pre-built distribution of OpenCV from pypi as a dependency for
vidstab
(see command below)
The below commands will install vidstab
with opencv-contrib-python
as dependencies.
From PyPi
pip install vidstab[cv2]
From Github
pip install -e git+https://github.com/AdamSpannbauer/python_video_stab.git#egg=vidstab[cv2]
Usage
The VidStab
class can be used as a command line script or in your own custom python code.
Using from command line
# Using defaults
python3 -m vidstab --input input_video.mov --output stable_video.avi
# Using a specific keypoint detector
python3 -m vidstab -i input_video.mov -o stable_video.avi -k GFTT
Using VidStab
class
from vidstab import VidStab
# Using defaults
stabilizer = VidStab()
stabilizer.stabilize(input_path='input_video.mov', output_path='stable_video.avi')
# Using a specific keypoint detector
stabilizer = VidStab(kp_method='ORB')
stabilizer.stabilize(input_path='input_video.mp4', output_path='stable_video.avi')
# Using a specific keypoint detector and customizing keypoint parameters
stabilizer = VidStab(kp_method='FAST', threshold=42, nonmaxSuppression=False)
stabilizer.stabilize(input_path='input_video.mov', output_path='stable_video.avi')
Plotting frame to frame transformations
from vidstab import VidStab
import matplotlib.pyplot as plt
stabilizer = VidStab()
stabilizer.stabilize(input_path='input_video.mov', output_path='stable_video.avi')
stabilizer.plot_trajectory()
plt.show()
stabilizer.plot_transforms()
plt.show()
Trajectories | Transforms |
---|---|
Using borders
from vidstab import VidStab
stabilizer = VidStab()
# black borders
stabilizer.stabilize(input_path='input_video.mov',
output_path='stable_video.avi',
border_type='black')
stabilizer.stabilize(input_path='input_video.mov',
output_path='wide_stable_video.avi',
border_type='black',
border_size=100)
# filled in borders
stabilizer.stabilize(input_path='input_video.mov',
output_path='ref_stable_video.avi',
border_type='reflect')
stabilizer.stabilize(input_path='input_video.mov',
output_path='rep_stable_video.avi',
border_type='replicate')
border_size=0 |
border_size=100 |
---|---|
border_type='reflect' |
border_type='replicate' |
---|---|
Using Frame Layering
from vidstab import VidStab, layer_overlay, layer_blend
# init vid stabilizer
stabilizer = VidStab()
# use vidstab.layer_overlay for generating a trail effect
stabilizer.stabilize(input_path=input_vid,
output_path='trail_stable_video.avi',
border_type='black',
border_size=100,
layer_func=layer_overlay)
# create custom overlay function
# here we use vidstab.layer_blend with custom alpha
# layer_blend will generate a fading trail effect with some motion blur
def layer_custom(foreground, background):
return layer_blend(foreground, background, foreground_alpha=.8)
# use custom overlay function
stabilizer.stabilize(input_path=input_vid,
output_path='blend_stable_video.avi',
border_type='black',
border_size=100,
layer_func=layer_custom)
layer_func=vidstab.layer_overlay |
layer_func=vidstab.layer_blend |
---|---|
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.