Skip to main content

Classes and functions for transforming between VIEWS-compliant dfs and tensors

Project description

views_tensor_utilities

This package is a set of tools to allow users to transfer data in typical VIEWS format between pandas DataFrames and numpy arrays (referred to as tensors).

VIEWS dataframes

VIEWS dataframes contain one or more features of panel data indexed by a two-column pandas MultiIndex. The first index column is a time unit (e.g. month, year) and the second is a spatial unit (most commonly country or priogrid cell). Missing data is represented by NaNs.

Months currently range from 1 (Jan 1980) to 852 (December 2050). There is no month 0. Countries and priogrid cells are denoted by non-consecutive integers.

A crucial difference between the country and priogrid spatial units is that the definition of priogrid is fixed in time, so all cells exist for all time units, but this is not the case for countries - countries sometimes cease to exist, or come into existence during the temporal range of a dataset. In a VIEWS dataframe, this is trivially represented by omitting the relevant (time-unit, space-unit) units of analysis.

Pandas dataframes are able to store numerical and string data in the same panel.

Pandas dataframes are able to store strings giving names to the index columns and feature columns.

VIEWS tensors

VIEWS tensors come in two forms. For the purposes of regression models, 3-dimensional tensors are used, with the dimensions being (time-unit, space-unit, feature). For neural-net-based models and visualisation, 4-dimensional tensors with dimensions (longitude-unit, latitude-unit, time-unit, feature) are used.

Tensor indices are contiguous sets of integers starting from 0.

Ordinary Numpy arrays cannot be used to store mixed numeric and string data.

Ordinary Numpy arrays do not store names for their axes or axis values.

Representing VIEWS dataframes as tensors

The views_tensor_utilities package represents dataframes by wrappers around pure numpy arrays, accompanied by minimal metadata to capture essential information from the dataframe which cannot be stores in these arrays, such that it is possible to reconstruct the original dataframe (possibly with some reordering of the columns). Each ViewsNumpy object holds a tensor containing only numerical data or only string data, the column names from the original dataframe corresponding to the data stored in the tensor, and the values of the tokens used to represent missing data and non-existent units of analysis.

The ViewsContainer class

An entire dataframe is represented by the ViewsTensorContainer class. This holds

  • a list of ViewsNumpy objects
  • the index of the original dataframe

The methods belonging to this class are

  • to_pandas: guard method which checks whether the container tensors are 3D (which can be converted back to a datafame) or 4D (which currently cannot) and respectively executes the conversion or returns an error
  • space_time_to_panel: method which converts the containers tensors to dataframes, combines them into a single dataframe and returns it
  • get_numeric_tensor: convenience method which retrieves the numeric tensor component, if it exists.
  • get_string_tensor: convenience method which retrieves the string tensor component, if it exists.

The ViewsNumpy class

This is a simple wrapper for a single numpy tensor containing either numeric or string data. It holds

  • a numpy array representing a 3D time-space-feature tensor or a 4d longitude-latitude-time-feature tensor
  • a list of columns names corresponding to the indices of the tensor's last (i.e. 3rd or 4th) dimension
  • a value for the does-not-exist token used to denote units-of-analysis that do not exist
  • a value for the missing token denoting legal units-of-analysis with undefined values

This class has no methods.

The ViewsDataframe class

This class holds

  • a pandas dataframe
  • the index of the pandas dataframe
  • a list of dataframes formed by splitting the original dataframe into numeric and string portions
  • a transformer function, selected according to whether the input dataframe is strideable

The methods belonging to this class are

  • __split_by_dtype: protected method which splits the input dataframe into 'number' and 'object' dataframes according to its column datatypes. If this fails to assign all the original dataframes to one of the split dataframes, an error is raised
  • to_numpy_time_space: this method calls __split_by_dtype, casts the split dataframes into (time, space, feature) tensors. These are wrapped into ViewsNumpy objects which also store the column names belonging to the split tensors, and the does-not-exist and missing tokens used in building the tensors. The ViewsNumpy objects and the original dataframe index are packed into a ViewsTensorContainer object which is returned.
  • to_numpy_longlat: this method first calls to_numpy_time_space, then casts the (time, space, feature) tensors to (longitude, latitude, time, feature) tensors, before returning the modified ViewsTensorContainer.

Examples

Converting a VIEWS dataframe into tensors

This is done by instantiating the ViewsDataframe class

views_dataframe = objects.ViewsDataframe(df)

The command

tensor_container=views_dataframe.to_numpy_time_space()

generates a tensor container containing one of more ViewsNumpy objects wrapping the numeric and/or string portions of the dataframe's data. These can be accessed by

tensor=tensor_container.ViewsTensors[0].tensor

Alternatively, the convenience methods can be used

tensor=tensor_container.get_numeric_tensor()

or

tensor=tensor_container.get_string_tensor()

Converting a ViewsTensorContainer into a pandas DataFrame

This is done by calling the container's to_pandas method:

df=tensor_container.to_pandas()

Note that the columns in the regenerated dataframe will likely not be in the same order as in the original dataframe.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

views_tensor_utilities-0.2.3.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

views_tensor_utilities-0.2.3-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file views_tensor_utilities-0.2.3.tar.gz.

File metadata

  • Download URL: views_tensor_utilities-0.2.3.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.11.5 Darwin/23.2.0

File hashes

Hashes for views_tensor_utilities-0.2.3.tar.gz
Algorithm Hash digest
SHA256 e01b2947c1dbede4f97ffa07ec0773bfb2b9e86253c8987dc6807c25f8c16f43
MD5 af2c1e47df10f059ecab87219f0f0696
BLAKE2b-256 bd6989c412c8933a95ee4cd6b001012a9349c38bf2557856345879b21327ee90

See more details on using hashes here.

File details

Details for the file views_tensor_utilities-0.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for views_tensor_utilities-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e3ea798573e2bc870f80c013a65627bda0365f264d672622aacec4f6251743ec
MD5 9d22152fd6f2963a63e36be8d227c22a
BLAKE2b-256 e7ceaa2620c447e61417165afd0c7737c5bcf349997723873a469d26d0de4713

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page