Skip to main content

Vim pipeline utility to ingest data

Project description

vimdatautils

Vim python package to ingest data into a database

Features

  1. InboundPipeline.py utility, used by a specific integration component
  2. Data access layer (Dal), provides simplified methods to access data in postgres db

Installation

vimdatautils requires Python 3

pip install vimdatautils

Or to install/upgrade a specific version

pip install vimdatautils==<VERSION> --force-reinstall

Quickstart

  1. InboundPipeline, you will need to implement two methods: pre_load_logic, post_load_logic
from vimdatautils.inbound_pipeline import InboundPipeline
class Inbound(InboundPipeline):
def pre_load_logic(self):
        print("this will be executed before the load!")

    def post_load_logic(self):
        print("this will be executed after the load!")

    def main():
        inbound = Inbound("config_file.json", "postgresql://postgres:password@127.0.0.1/postgres")
        inbound.execute()
  1. Dal, import vimdatautils.dal, you will need to construct the dal with a postgres connection string in the below pattern

    postgresql://<db_user>:<db_password>@<db_host>/db_name
    
from vimdatautils.dal import Dal

dal = Dal("postgresql://postgres:password@127.0.0.1/postgres")
dal.execute_cmd("select 1;")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for vimdatautils, version 0.79
Filename, size File type Python version Upload date Hashes
Filename, size vimdatautils-0.79-py3-none-any.whl (6.7 kB) File type Wheel Python version py3 Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page