Skip to main content

vimpy: nonparametric variable importance assessment in python

Project description

vimpy: nonparametric variable importance assessment in python

License: MIT

Author: Brian Williamson

Introduction

In predictive modeling applications, it is often of interest to determine the relative contribution of subsets of features in explaining an outcome; this is often called variable importance. It is useful to consider variable importance as a function of the unknown, underlying data-generating mechanism rather than the specific predictive algorithm used to fit the data. This package provides functions that, given fitted values from predictive algorithms, compute nonparametric estimates of deviance- and variance-based variable importance, along with asymptotically valid confidence intervals for the true importance.

Installation

You may install a stable release of vimpy using pip by running python pip install vimpy from a Terminal window. Alternatively, you may install within a virtualenv environment.

You may install the current dev release of vimpy by downloading this repository directly.

Issues

If you encounter any bugs or have any specific feature requests, please file an issue.

Example

This example shows how to use vimpy in a simple setting with simulated data and using a single regression function. For more examples and detailed explanation, please see the R vignette (to come).

## load required libraries
import numpy as np
import vimpy
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import GridSearchCV

## -------------------------------------------------------------
## problem setup
## -------------------------------------------------------------
## define a function for the conditional mean of Y given X
def cond_mean(x = None):
    f1 = np.where(np.logical_and(-2 <= x[:, 0], x[:, 0] < 2), np.floor(x[:, 0]), 0) 
    f2 = np.where(x[:, 1] <= 0, 1, 0)
    f3 = np.where(x[:, 2] > 0, 1, 0)

    f6 = np.absolute(x[:, 5]/4) ** 3
    f7 = np.absolute(x[:, 6]/4) ** 5

    f11 = (7./3)*np.cos(x[:, 10]/2)

    ret = f1 + f2 + f3 + f6 + f7 + f11

    return ret

## create data
np.random.seed(4747)
n = 100
p = 15
s = 1 # importance desired for X_1
x = np.zeros((n, p))
for i in range(0, x.shape[1]) :
    x[:,i] = np.random.normal(0, 2, n)

y = cond_mean(x) + np.random.normal(0, 1, n)

## -------------------------------------------------------------
## preliminary step: get regression estimators
## -------------------------------------------------------------
## use grid search to get optimal number of trees and learning rate
ntrees = np.arange(100, 3500, 500)
lr = np.arange(.01, .5, .05)

param_grid = [{'n_estimators':ntrees, 'learning_rate':lr}]

## set up cv objects
cv_full = GridSearchCV(GradientBoostingRegressor(loss = 'ls', max_depth = 1), param_grid = param_grid, cv = 5)
cv_small = GridSearchCV(GradientBoostingRegressor(loss = 'ls', max_depth = 1), param_grid = param_grid, cv = 5)

## fit the full regression
cv_full.fit(x, y)
full_fit = cv_full.best_estimator_.predict(x)

## fit the reduced regression
x_small = np.delete(x, s, 1) # delete the columns in s
cv_small.fit(x_small, full_fit)
small_fit = cv_small.best_estimator_.predict(x_small)

## -------------------------------------------------------------
## get variable importance estimates
## -------------------------------------------------------------
## set up the vimp object
vimp = vimpy.vimp_regression(y, x, full_fit, small_fit, s)
## get the naive estimator
vimp.plugin()
## get the corrected estimator
vimp.update()
vimp.onestep_based_estimator()
## get a standard error
vimp.onestep_based_se()
## get a confidence interval
vimp.get_ci()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vimpy-0.0.10.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

vimpy-0.0.10-py2-none-any.whl (5.3 kB view details)

Uploaded Python 2

File details

Details for the file vimpy-0.0.10.tar.gz.

File metadata

  • Download URL: vimpy-0.0.10.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for vimpy-0.0.10.tar.gz
Algorithm Hash digest
SHA256 8335bd5fdea1e93210ac12f4a86183be73e59c5c912b0489c13d85949864e705
MD5 f390203a8654a098917af25f06d69a32
BLAKE2b-256 37394ef83238c7228d46c57adde85ada9db13396159a1b74960bf2655ad8e431

See more details on using hashes here.

File details

Details for the file vimpy-0.0.10-py2-none-any.whl.

File metadata

File hashes

Hashes for vimpy-0.0.10-py2-none-any.whl
Algorithm Hash digest
SHA256 a4f8191b722f25452aa1096209be0b9f950f6823e99073f55fe645cee659d94d
MD5 1068b3395e7df5035510f0213323c720
BLAKE2b-256 5c5631a983a5f11bdc1eeef090e17f20a206ffa4efd6a4bf8e9ea1b130ef2571

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page