Skip to main content

vimpy: nonparametric variable importance assessment in python

Project description

vimpy: nonparametric variable importance assessment in python

License: MIT

Author: Brian Williamson

Introduction

In predictive modeling applications, it is often of interest to determine the relative contribution of subsets of features in explaining an outcome; this is often called variable importance. It is useful to consider variable importance as a function of the unknown, underlying data-generating mechanism rather than the specific predictive algorithm used to fit the data. This package provides functions that, given fitted values from predictive algorithms, compute nonparametric estimates of deviance- and variance-based variable importance, along with asymptotically valid confidence intervals for the true importance.

Installation

You may install a stable release of vimpy using pip by running python pip install vimpy from a Terminal window. Alternatively, you may install within a virtualenv environment.

You may install the current dev release of vimpy by downloading this repository directly.

Issues

If you encounter any bugs or have any specific feature requests, please file an issue.

Example

This example shows how to use vimpy in a simple setting with simulated data and using a single regression function. For more examples and detailed explanation, please see the R vignette (to come).

## load required libraries
import numpy as np
import vimpy
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import GridSearchCV

## -------------------------------------------------------------
## problem setup
## -------------------------------------------------------------
## define a function for the conditional mean of Y given X
def cond_mean(x = None):
    f1 = np.where(np.logical_and(-2 <= x[:, 0], x[:, 0] < 2), np.floor(x[:, 0]), 0) 
    f2 = np.where(x[:, 1] <= 0, 1, 0)
    f3 = np.where(x[:, 2] > 0, 1, 0)

    f6 = np.absolute(x[:, 5]/4) ** 3
    f7 = np.absolute(x[:, 6]/4) ** 5

    f11 = (7./3)*np.cos(x[:, 10]/2)

    ret = f1 + f2 + f3 + f6 + f7 + f11

    return ret

## create data
np.random.seed(4747)
n = 100
p = 15
s = 1 # importance desired for X_1
x = np.zeros((n, p))
for i in range(0, x.shape[1]) :
    x[:,i] = np.random.normal(0, 2, n)

y = cond_mean(x) + np.random.normal(0, 1, n)

## -------------------------------------------------------------
## preliminary step: get regression estimators
## -------------------------------------------------------------
## use grid search to get optimal number of trees and learning rate
ntrees = np.arange(100, 3500, 500)
lr = np.arange(.01, .5, .05)

param_grid = [{'n_estimators':ntrees, 'learning_rate':lr}]

## set up cv objects
cv_full = GridSearchCV(GradientBoostingRegressor(loss = 'ls', max_depth = 1), param_grid = param_grid, cv = 5)
cv_small = GridSearchCV(GradientBoostingRegressor(loss = 'ls', max_depth = 1), param_grid = param_grid, cv = 5)

## fit the full regression
cv_full.fit(x, y)
full_fit = cv_full.best_estimator_.predict(x)

## fit the reduced regression
x_small = np.delete(x, s, 1) # delete the columns in s
cv_small.fit(x_small, full_fit)
small_fit = cv_small.best_estimator_.predict(x_small)

## -------------------------------------------------------------
## get variable importance estimates
## -------------------------------------------------------------
## set up the vimp object
vimp = vimpy.vimp_regression(y, x, full_fit, small_fit, s)
## get the naive estimator
vimp.plugin()
## get the corrected estimator
vimp.update()
vimp.onestep_based_estimator()
## get a standard error
vimp.onestep_based_se()
## get a confidence interval
vimp.get_ci()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vimpy-0.0.9.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

vimpy-0.0.9-py2-none-any.whl (5.3 kB view details)

Uploaded Python 2

File details

Details for the file vimpy-0.0.9.tar.gz.

File metadata

  • Download URL: vimpy-0.0.9.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for vimpy-0.0.9.tar.gz
Algorithm Hash digest
SHA256 6cfd437c7584e01c2cfdd2424aea9aa687b32b2d261cde2be4d6753003ec1e37
MD5 a92e7d7def571e17c6afafe2a0331f18
BLAKE2b-256 d3529acc45faad3cd65aaf3a27ecc6c4d58eea67917f004b2237b090f3dcb451

See more details on using hashes here.

File details

Details for the file vimpy-0.0.9-py2-none-any.whl.

File metadata

File hashes

Hashes for vimpy-0.0.9-py2-none-any.whl
Algorithm Hash digest
SHA256 028004c63eacbd78145f04b4e0825fd66bd269944461db65002933c408250442
MD5 0078e489c0f93087b45939862795f24a
BLAKE2b-256 ba2562bd194731a06bbeff8762823e93c20c120920ea2075d87f348a46a3b2c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page