Skip to main content

Visym Python Tools for Visual Dataset Transformation

Project description

[![PyPI version](https://badge.fury.io/py/vipy.svg)](https://badge.fury.io/py/vipy) [![CI](https://github.com/visym/vipy/workflows/vipy%20unit%20tests/badge.svg)](https://github.com/visym/vipy/actions?query=workflow%3A%22vipy+unit+tests%22)

VIPY

VIPY: Visym Python Tools for Visual Dataset Transformation URL: https://github.com/visym/vipy/

VIPY is a python package for representation, transformation and visualization of annotated videos and images. Annotations are the ground truth provided by labelers (e.g. object bounding boxes, face identities, temporal activity clips), suitable for training computer vision systems. VIPY provides tools to easily edit videos and images so that the annotations are transformed along with the pixels. This enables a clean interface for transforming complex datasets for input to your computer vision training and testing pipeline.

VIPY provides:

  • Representation of videos with labeled activities that can be resized, clipped, rotated, scaled and cropped

  • Representation of images with object bounding boxes that can be manipulated as easily as editing an image

  • Clean visualization of annotated images and videos

  • Lazy loading of images and videos suitable for distributed procesing (e.g. dask, spark)

  • Straightforward integration into machine learning toolchains (e.g. torch, numpy)

  • Fluent interface for chaining operations on videos and images

  • Dataset download, unpack and import (e.g. Charades, AVA, ActivityNet, Kinetics, Moments in Time)

  • Video and image web search tools with URL downloading and caching

  • Minimum dependencies for easy installation (e.g. AWS Lambda)

[![VIPY MEVA dataset visualization](http://i3.ytimg.com/vi/_jixHQr5dK4/maxresdefault.jpg)](https://youtu.be/_jixHQr5dK4)

Requirements

python 3.* [ffmpeg](https://ffmpeg.org/download.html) (required for videos) numpy, matplotlib, dill, pillow, ffmpeg-python

Installation

`python pip install vipy `

Optional dependencies are installable as a complete package:

`python pip install pip --upgrade pip install 'vipy[all]' `

You will receive a friendly warning if attempting to use an optional dependency before installation.

Quickstart

`python import vipy vipy.image.owl().mindim(512).show(figure=1).fliplr().show(figure=2) `

The [demos](https://github.com/visym/vipy/tree/master/demo) provide useful notebook tutorials to help you get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vipy-1.10.17.tar.gz (178.8 kB view details)

Uploaded Source

File details

Details for the file vipy-1.10.17.tar.gz.

File metadata

  • Download URL: vipy-1.10.17.tar.gz
  • Upload date:
  • Size: 178.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for vipy-1.10.17.tar.gz
Algorithm Hash digest
SHA256 39da7d0f47e97e9d5127116d115d305e410da8a3718da5cc056081951ccbde7c
MD5 10176df7e5eee4155deac6fd19aad46c
BLAKE2b-256 1072fc7d8a32dc5e117cce07837ff77d5c0b285ca9d5f2e4bf4bebd0a246e1a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page