Visym Python Tools for Visual Dataset Transformation
Project description
VIPY
VIPY: Visym Python Tools for Visual Dataset Transformation
Documentation: https://visym.github.io/vipy
VIPY is a python package for representation, transformation and visualization of annotated videos and images. Annotations are the ground truth provided by labelers (e.g. object bounding boxes, face identities, temporal activity clips), suitable for training computer vision systems. VIPY provides tools to easily edit videos and images so that the annotations are transformed along with the pixels. This enables a clean interface for transforming complex datasets for input to your computer vision training and testing pipeline.
VIPY provides:
- Representation of videos with labeled activities that can be resized, clipped, rotated, scaled and cropped
- Representation of images with object bounding boxes that can be manipulated as easily as editing an image
- Clean visualization of annotated images and videos
- Lazy loading of images and videos suitable for distributed procesing (e.g. dask, spark)
- Straightforward integration into machine learning toolchains (e.g. torch, numpy)
- Fluent interface for chaining operations on videos and images
- Dataset download, unpack and import (e.g. Charades, AVA, ActivityNet, Kinetics, Moments in Time)
- Video and image web search tools with URL downloading and caching
- Minimum dependencies for easy installation (e.g. AWS Lambda, Flask)
Requirements
python 3.*
ffmpeg (required for videos)
numpy, matplotlib, dill, pillow, ffmpeg-python
Installation
pip install vipy
Optional dependencies are installable as a complete package:
pip install pip --upgrade
pip install 'vipy[all]'
You will receive a friendly warning if attempting to use an optional dependency before installation.
Quickstart
import vipy
vipy.image.owl().mindim(512).zeropad(padwidth=150, padheight=0).show()
The demos provide useful notebook tutorials to help you get started.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file vipy-1.11.12.tar.gz
.
File metadata
- Download URL: vipy-1.11.12.tar.gz
- Upload date:
- Size: 231.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2db3fd5ae243c82f901eb0c2acfa9ad05b95b88a385a6f9de00757f11e674c8f |
|
MD5 | cbc8d0ffb38212d1d67a1bf72a887e14 |
|
BLAKE2b-256 | adc4a7f86d10ce2f374a54e13633f709e2e4a8b0a32ba62e900501786351e769 |
File details
Details for the file vipy-1.11.12-py3-none-any.whl
.
File metadata
- Download URL: vipy-1.11.12-py3-none-any.whl
- Upload date:
- Size: 252.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 08db23395014f1a2d5c9a5409e22ca87a8bf6a0693471d06ea1c0635a4493a6b |
|
MD5 | 8cf4704b6e36dce3fceba1a9efce6585 |
|
BLAKE2b-256 | c82ae190390e6c5592daf63a8d1b614b70cecdd7c035438f4b947136931119c1 |