Skip to main content

Visym Python Tools for Visual Dataset Transformation

Project description

[![PyPI version](https://badge.fury.io/py/vipy.svg)](https://badge.fury.io/py/vipy) [![CI](https://github.com/visym/vipy/workflows/vipy%20unit%20tests/badge.svg)](https://github.com/visym/vipy/actions?query=workflow%3A%22vipy+unit+tests%22)

VIPY

VIPY: Visym Python Tools for Visual Dataset Transformation Docs: https://visym.github.io/vipy

VIPY is a python package for representation, transformation and visualization of annotated videos and images. Annotations are the ground truth provided by labelers (e.g. object bounding boxes, face identities, temporal activity clips), suitable for training computer vision systems. VIPY provides tools to easily edit videos and images so that the annotations are transformed along with the pixels. This enables a clean interface for transforming complex datasets for input to your computer vision training and testing pipeline.

VIPY provides:

  • Representation of videos with labeled activities that can be resized, clipped, rotated, scaled and cropped

  • Representation of images with object bounding boxes that can be manipulated as easily as editing an image

  • Clean visualization of annotated images and videos

  • Lazy loading of images and videos suitable for distributed procesing (e.g. dask, spark)

  • Straightforward integration into machine learning toolchains (e.g. torch, numpy)

  • Fluent interface for chaining operations on videos and images

  • Dataset download, unpack and import (e.g. Charades, AVA, ActivityNet, Kinetics, Moments in Time)

  • Video and image web search tools with URL downloading and caching

  • Minimum dependencies for easy installation (e.g. AWS Lambda)

[![VIPY MEVA dataset visualization](http://i3.ytimg.com/vi/_jixHQr5dK4/maxresdefault.jpg)](https://youtu.be/_jixHQr5dK4)

Requirements

python 3.* [ffmpeg](https://ffmpeg.org/download.html) (required for videos) numpy, matplotlib, dill, pillow, ffmpeg-python

Installation

`python pip install vipy `

Optional dependencies are installable as a complete package:

`python pip install pip --upgrade pip install 'vipy[all]' `

You will receive a friendly warning if attempting to use an optional dependency before installation.

Quickstart

`python import vipy vipy.image.owl().mindim(512).zeropad(padwidth=150, padheight=0).show() ` <img src=”./docs/vipy_image_owl.jpg” width=”700”>

The [demos](https://github.com/visym/vipy/tree/master/demo) provide useful notebook tutorials to help you get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vipy-1.11.3.tar.gz (204.4 kB view details)

Uploaded Source

File details

Details for the file vipy-1.11.3.tar.gz.

File metadata

  • Download URL: vipy-1.11.3.tar.gz
  • Upload date:
  • Size: 204.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for vipy-1.11.3.tar.gz
Algorithm Hash digest
SHA256 623b9a00fd8fc62bf8d79945f29c80450e49c1db1639a571fe2f54a9a94d28d3
MD5 311c799b96522f799e43903bdbe3d3dc
BLAKE2b-256 de7c419305a58e4eaa7fb56bdd8783db71ad49d7370d32ba9a936ab9757b50b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page