visualization tool for tensor in CNN
Project description
visactivation
Written by YudeWang
A simple visualization tool for tensor activation in CNN.
Install
pip install visactivation
Document
visactivation.Tensor2Color(tensor, input_type=None, image=None, image_weight=0.3, colormap=cv2.COLORMAP_JET, act_type='max', norm_type='all')
Coloring the feature map in CNN to visualize the corresponding activation intensity.
Parameters:
- tensor (numpy.ndarray) - the input tensor for visualization
- input_type (str) - 'NCHW', 'NHW','CHW','HW'. When tensor.ndim == 3, input_type must be given.
- image (numpy.ndarray, optional) - corresponding image with size NHW3 or HW3
- image_weight (float, optional) - weight of image when visualization activation
- colormap (int, str)
- int - cv2.COLORMAP_xxx can be used here
- str - 'voc' PASCAL VOC colormap, 'random' Random colormap
- act_type (str) - 'sum', 'max', 'mean', 'none'.
- 'sum' - choose the sum value in channel dimension for each spatial pixel
- 'max' - choose the max value in channel dimension for each spatial pixel
- 'mean' - choose the mean value in channel dimension for each spatial pixel
- 'none' - preseve the activation of C channels and visualize them independently.
- norm_type (str) - 'relu','all'.
- 'relu' - tensor[tensor<0]=0, tensor/max(tensor)
- 'all' - (tensor-min)/(max-min)
Return:
N x C x H x W x 3 size numpy ndarray
visactivation.Prob2Color(tensor, input_type=None, image=None, image_weight=0.3, colormap=cv2.COLORMAP_JET, act_type='max')
Coloring the probability map in CNN to visualize the corresponding activation intensity.
Parameters:
- tensor (numpy.ndarray) - the input tensor for visualization, the value should in range [0,1]
- input_type (str) - 'NCHW', 'NHW','CHW','HW'. When tensor.ndim == 3, input_type must be given.
- image (numpy.ndarray, optional) - corresponding image with size NHW3 or HW3
- image_weight (float, optional) - weight of image when visualization activation
- colormap (int, str)
- int - cv2.COLORMAP_xxx can be used here
- str - 'voc' PASCAL VOC colormap, 'random' Random colormap
- act_type (str) - 'sum', 'max', 'mean', 'none'.
- 'sum' - choose the sum value in channel dimension for each spatial pixel. The result larger than 1 is cut off to 1.
- 'max' - choose the max value in channel dimension for each spatial pixel
- 'mean' - choose the mean value in channel dimension for each spatial pixel
- 'none' - preseve the activation of C channels and visualize them independently.
Return:
N x C x H x W x 3 size numpy ndarray
visactivation.Label2Color(tensor, image=None, image_weight=0.3, colormap='random')
Coloring the label map predicted by to visualize the corresponding activation intensity.
Parameters:
- tensor (numpy.ndarray) - the input label for visualization, the value should in be positive integer in [0, 255].
- image (numpy.ndarray, optional) - corresponding image with size NHW3 or HW3
- image_weight (float, optional) - weight of image when visualization activation
- colormap (str) - 'voc' PASCAL VOC colormap, 'random' Random colormap
Return:
N x H x W x 3 size numpy ndarray
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file visactivation-0.0.1.tar.gz
.
File metadata
- Download URL: visactivation-0.0.1.tar.gz
- Upload date:
- Size: 4.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34c96af4ba51a0225fdea8adb0dbd03fbd1dc9907023c47637c10a2958b4aebd |
|
MD5 | 5911ee67af0d8d84c37e0321dbef556a |
|
BLAKE2b-256 | eaf9d88e288f4f80f40d65150ba6bfe241367f91a9bd134f04799fff1b2fcbd9 |
File details
Details for the file visactivation-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: visactivation-0.0.1-py3-none-any.whl
- Upload date:
- Size: 5.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d219a957db8ed5e86abd67b783483c6514a8dfe0955a94569db3b1fa6a9188a5 |
|
MD5 | fe8b370de260fd2240692d971dcb20b0 |
|
BLAKE2b-256 | dec17d41bf00ae58dacefef08299f0411c0c78aa02924ae06912c56030a25fe9 |