Skip to main content

Toolset for Vision Agent

Project description

vision_agent

🔍🤖 Vision Agent

ci_status PyPI version version

Vision Agent is a library for that helps you to use multimodal models to organize and structure your image data. Check out our discord for roadmaps and updates!

One of the problems of dealing with image data is it can be difficult to organize and search. For example, you might have a bunch of pictures of houses and want to count how many yellow houses you have, or how many houses with adobe roofs. The vision agent library uses LMMs to help create tags or descriptions of images to allow you to search over them, or use them in a database to carry out other operations.

Getting Started

LMMs

To get started, you can use an LMM to start generating text from images. The following code will use the LLaVA-1.6 34B model to generate a description of the image you pass it.

import vision_agent as va

model = va.lmm.get_lmm("llava")
model.generate("Describe this image", "image.png")
>>> "A yellow house with a green lawn."

WARNING We are hosting the LLaVA-1.6 34B model, if it times out please wait ~3-5 min for the server to warm up as it shuts down when usage is low.

DataStore

You can use the DataStore class to store your images, add new metadata to them such as descriptions, and search over different columns.

import vision_agent as va
import pandas as pd

df = pd.DataFrame({"image_paths": ["image1.png", "image2.png", "image3.png"]})
ds = va.data.DataStore(df)
ds = ds.add_lmm(va.lmm.get_lmm("llava"))
ds = ds.add_embedder(va.emb.get_embedder("sentence-transformer"))

ds = ds.add_column("descriptions", "Describe this image.")

This will use the prompt you passed, "Describe this image.", and the LMM to create a new column of descriptions for your image. Your data will now contain a new column with the descriptions of each image:

image_paths image_id descriptions
image1.png 1 "A yellow house with a green lawn."
image2.png 2 "A white house with a two door garage."
image3.png 3 "A wooden house in the middle of the forest."

You can now create an index on the descriptions column and search over it to find images that match your query.

ds = ds.build_index("descriptions")
ds.search("A yellow house.", top_k=1)
>>> [{'image_paths': 'image1.png', 'image_id': 1, 'descriptions': 'A yellow house with a green lawn.'}]

You can also create other columns for you data such as is_yellow:

ds = ds.add_column("is_yellow", "Is the house in this image yellow? Please answer yes or no.")

which would give you a dataset similar to this:

image_paths image_id descriptions is_yellow
image1.png 1 "A yellow house with a green lawn." "yes"
image2.png 2 "A white house with a two door garage." "no"
image3.png 3 "A wooden house in the middle of the forest." "no"

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vision_agent-0.0.28.tar.gz (20.7 kB view details)

Uploaded Source

Built Distribution

vision_agent-0.0.28-py3-none-any.whl (24.1 kB view details)

Uploaded Python 3

File details

Details for the file vision_agent-0.0.28.tar.gz.

File metadata

  • Download URL: vision_agent-0.0.28.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.11 Linux/6.5.0-1016-azure

File hashes

Hashes for vision_agent-0.0.28.tar.gz
Algorithm Hash digest
SHA256 2c1975306ec2c251ff7237efbacffc48727594825c95732453c9ecb9dce151b9
MD5 e32d971c2c39c36ed6f0ece9c854eab8
BLAKE2b-256 5af003f8fd103c71fc3c5fd9e3ba362015646bc175963ee9cb3fbfcdc23ad805

See more details on using hashes here.

File details

Details for the file vision_agent-0.0.28-py3-none-any.whl.

File metadata

  • Download URL: vision_agent-0.0.28-py3-none-any.whl
  • Upload date:
  • Size: 24.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.11 Linux/6.5.0-1016-azure

File hashes

Hashes for vision_agent-0.0.28-py3-none-any.whl
Algorithm Hash digest
SHA256 ac38f7a29cefb3706be21ebde3e0d664f4b541abef4f514e56078109ab5d700d
MD5 b282c94b640c2df2a3a6a010ffbac423
BLAKE2b-256 624d64ae82b856afd6af66538b7a796c89584b29115dca099077492da5d2b1c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page