Skip to main content

Vision Llama - Pytorch

Project description

Multi-Modality

Vision LLama

Implementation of VisionLLaMA from the paper: "VisionLLaMA: A Unified LLaMA Interface for Vision Tasks" in PyTorch and Zeta. PAPER LINK

install

$ pip install vision-llama

usage

import torch
from vision_llama.main import VisionLlama

# Forward Tensor
x = torch.randn(1, 3, 224, 224)

# Create an instance of the VisionLlamaBlock model with the specified parameters
model = VisionLlama(
    dim=768, depth=12, channels=3, heads=12, num_classes=1000
)


# Print the shape of the output tensor when x is passed through the model
print(model(x))

License

MIT

Citation

@misc{chu2024visionllama,
    title={VisionLLaMA: A Unified LLaMA Interface for Vision Tasks}, 
    author={Xiangxiang Chu and Jianlin Su and Bo Zhang and Chunhua Shen},
    year={2024},
    eprint={2403.00522},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

todo

  • Implement the AS2DRoPE rope
  • Implement the GSA attention

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vision_llama-0.0.7.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

vision_llama-0.0.7-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file vision_llama-0.0.7.tar.gz.

File metadata

  • Download URL: vision_llama-0.0.7.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/23.3.0

File hashes

Hashes for vision_llama-0.0.7.tar.gz
Algorithm Hash digest
SHA256 cc966bae2d203a1da0cd1cac6e87ff665803cace3d76c7484cf23dc066b2b5aa
MD5 6b2291921485eb6ff5c7c45cf4962f1e
BLAKE2b-256 ea91fbaacb9b01be237e7afadaee8a7c0b0535e05ddcef76b4f34c76e218e92d

See more details on using hashes here.

File details

Details for the file vision_llama-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: vision_llama-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/23.3.0

File hashes

Hashes for vision_llama-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 33ddbbac9266ba2d8440bf78d41ba0c3af2c9520a85d62ab0bd0cff9d43ffc1f
MD5 42ca9927f102c45088d9f72226d6c1f4
BLAKE2b-256 dcec740a5dc1527a25bf2b27667a2cc95f986beb2b681789f5adaead78af5de5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page