Skip to main content

Parse PDF documents into markdown formatted content using Vision LLMs

Project description

Vision Parse

License: MIT Author: Arun Brahma PyPI version

🚀 Parse PDF documents into beautifully formatted markdown content using state-of-the-art Vision Language Models - all with just a few lines of code!

🎯 Introduction

Vision Parse harnesses the power of Vision Language Models to revolutionize document processing:

  • 📝 Smart Content Extraction: Intelligently identifies and extracts text and tables with high precision
  • 🎨 Content Formatting: Preserves document hierarchy, styling, and indentation for markdown formatted content
  • 🤖 Multi-LLM Support: Supports multiple Vision LLM providers i.e. OpenAI, LLama, Gemini etc. for accuracy and speed
  • 🔄 PDF Document Support: Handle multi-page PDF documents effortlessly by converting each page into byte64 encoded images
  • 📁 Local Model Hosting: Supports local model hosting using Ollama for secure document processing and for offline use

🚀 Getting Started

Prerequisites

  • 🐍 Python >= 3.9
  • 🖥️ Ollama (if you want to use local models)
  • 🤖 API Key for OpenAI or Google Gemini (if you want to use OpenAI or Google Gemini)

Installation

Install the core package using pip (Recommended):

pip install vision-parse

Install the additional dependencies for OpenAI or Gemini:

# For OpenAI support
pip install 'vision-parse[openai]'
# For Gemini support
pip install 'vision-parse[gemini]'
# To install all the additional dependencies
pip install 'vision-parse[all]'

Install the package from source:

pip install 'git+https://github.com/iamarunbrahma/vision-parse.git#egg=vision-parse[all]'

Setting up Ollama (Optional)

See examples/ollama_setup.md on how to setup Ollama locally.

⌛️ Usage

Basic Example Usage

from vision_parse import VisionParser

# Initialize parser
parser = VisionParser(
    model_name="llama3.2-vision:11b", # For local models, you don't need to provide the api key
    temperature=0.4,
    top_p=0.5,
    image_mode="url", # Image mode can be "url", "base64" or None
    detailed_extraction=False, # Set to True for more detailed extraction
    enable_concurrency=False, # Set to True for parallel processing
)

# Convert PDF to markdown
pdf_path = "path/to/your/document.pdf" # local path to your pdf file
markdown_pages = parser.convert_pdf(pdf_path)

# Process results
for i, page_content in enumerate(markdown_pages):
    print(f"\n--- Page {i+1} ---\n{page_content}")

Customize Ollama Configuration for parallel processing

from vision_parse import VisionParser

# Initialize parser with Ollama configuration
parser = VisionParser(
    model_name="llama3.2-vision:11b",
    temperature=0.7,
    top_p=0.6,
    num_ctx=4096,
    image_mode="base64",
    detailed_extraction=True,
    ollama_config={
        "OLLAMA_NUM_PARALLEL": "4",
        "OLLAMA_REQUEST_TIMEOUT": "240.0",
    },
    enable_concurrency=True,
)

# Convert PDF to markdown
pdf_path = "path/to/your/document.pdf"
markdown_pages = parser.convert_pdf(pdf_path)

OpenAI or Gemini Model Usage

from vision_parse import VisionParser

# Initialize parser with OpenAI model
parser = VisionParser(
    model_name="gpt-4o",
    api_key="your-openai-api-key", # Get the OpenAI API key from https://platform.openai.com/api-keys
    temperature=0.7,
    top_p=0.4,
    image_mode="url",
    detailed_extraction=True, # Set to True for more detailed extraction
    enable_concurrency=True,
)

# Initialize parser with Google Gemini model
parser = VisionParser(
    model_name="gemini-1.5-flash",
    api_key="your-gemini-api-key", # Get the Gemini API key from https://aistudio.google.com/app/apikey
    temperature=0.7,
    top_p=0.4,
    image_mode="url",
    detailed_extraction=True, # Set to True for more detailed extraction
    enable_concurrency=True,
)

✅ Supported Models

This package supports the following Vision LLM models:

  • OpenAI: gpt-4o, gpt-4o-mini
  • Google Gemini: gemini-1.5-flash, gemini-2.0-flash-exp, gemini-1.5-pro
  • Meta Llama and LLava from Ollama: llava:13b, llava:34b, llama3.2-vision:11b, llama3.2-vision:70b

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vision_parse-0.1.8.tar.gz (49.7 kB view details)

Uploaded Source

Built Distribution

vision_parse-0.1.8-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file vision_parse-0.1.8.tar.gz.

File metadata

  • Download URL: vision_parse-0.1.8.tar.gz
  • Upload date:
  • Size: 49.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for vision_parse-0.1.8.tar.gz
Algorithm Hash digest
SHA256 156633c3fa23b804a68c4316884584eb1c0404b07732d186920a7b30c7e233c4
MD5 b76fafae46b5f4548c5133e4092e15ec
BLAKE2b-256 af2ca724b41fe9d1176512632fbc15f1bdf06a71f8568eb334323e2545f357b9

See more details on using hashes here.

File details

Details for the file vision_parse-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for vision_parse-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 ff472a4126f0d5281e5fc2ae117faf07cbe9c0babde5f207d3b0468d17b2a902
MD5 09b172913ea0984bc7373f02f85f9862
BLAKE2b-256 ec9240da9c3f11b238021590c423c7ff843725da13359dbecdf021b8bd4fa9d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page