converter tool for visionai format
Project description
visionai-data-format
VisionAI
format is Dataverse standardized annotation format to label objects and sequences in the context of Autonomous Driving System(ADS). VisionAI
provides consistent and effective driving environment description and categorization in the real-world case.
This tool provides validator of VisionAI
format schema. Currently, the library supports:
- Validate created
VisionAI
data format - Validate
VisionAI
data attributes with givenOntology
information.
For a more in-depth understanding of the VisionAI format, please visit this URL: https://linkervision.gitbook.io/dataverse/visionai-format/visionai-data-format.
Getting started
(WIP)
Install the package
pip3 install visionai-data-format
Prerequisites: You must have Python 3.7 and above to use this package.
Example
The following sections provide examples for the following:
Validate VisionAI schema
Example
To validate VisionAI
data structure, could follow the example below:
from visionai_data_format.schemas.visionai_schema import VisionAIModel
# your custom visionai data
custom_visionai_data = {
"visionai": {
"frame_intervals": [
{
"frame_start": 0,
"frame_end": 0
}
],
"frames": {
"000000000000": {
"objects": {
"893ac389-7782-4bc3-8f61-09a8e48c819f": {
"object_data": {
"bbox": [
{
"name": "bbox_shape",
"stream":"camera1",
"val": [761.565,225.46,98.33000000000004, 164.92000000000002]
}
],
"cuboid": [
{
"name": "cuboid_shape",
"stream": "lidar1",
"val": [
8.727633224700037,-1.8557590122690717,-0.6544039394148177, 0.0,
0.0,-1.5807963267948966,1.2,0.48,1.89
]
}
]
}
}
},
"frame_properties": {
"streams": {
"camera1": {
"uri": "https://helenmlopsstorageqatest.blob.core.windows.net/vainewformat/kitti/kitti_small/data/000000000000/data/camera1/000000000000.png"
},
"lidar1": {
"uri": "https://helenmlopsstorageqatest.blob.core.windows.net/vainewformat/kitti/kitti_small/data/000000000000/data/lidar1/000000000000.pcd"
}
}
}
}
},
"objects": {
"893ac389-7782-4bc3-8f61-09a8e48c819f": {
"frame_intervals": [
{
"frame_start": 0,
"frame_end": 0
}
],
"name": "pedestrian",
"object_data_pointers": {
"bbox_shape": {
"frame_intervals": [
{
"frame_start": 0,
"frame_end": 0
}
],
"type": "bbox"
},
"cuboid_shape": {
"frame_intervals": [
{
"frame_start": 0,
"frame_end": 0
}
],
"type": "cuboid"
}
},
"type": "pedestrian"
}
},
"coordinate_systems": {
"lidar1": {
"type": "sensor_cs",
"parent": "",
"children": [
"camera1"
]
},
"camera1": {
"type": "sensor_cs",
"parent": "lidar1",
"children": [],
"pose_wrt_parent": {
"matrix4x4": [
-0.00159609942076306,
-0.005270645688933059,
0.999984790046273,
0.3321936949138632,
-0.9999162467477257,
0.012848695454066989,
-0.0015282672486530082,
-0.022106263278130818,
-0.012840436309973332,
-0.9999035522454274,
-0.0052907123281999745,
-0.06171977032225582,
0.0,
0.0,
0.0,
1.0
]
}
}
},
"streams": {
"camera1": {
"type": "camera",
"uri": "https://helenmlopsstorageqatest.blob.core.windows.net/vainewformat/kitti/kitti_small/data/000000000000/data/camera1/000000000000.png",
"description": "Frontal camera",
"stream_properties": {
"intrinsics_pinhole": {
"camera_matrix_3x4": [
-1.1285209781809271,
-706.9900823216068,
-181.46849639413674,
0.2499212908887926,
-3.726606344908137,
9.084661126711246,
-1.8645282480709864,
-0.31027342289053916,
707.0385458128643,
-1.0805602883730354,
603.7910589125847,
45.42556655376811
],
"height_px": 370,
"width_px": 1224
}
}
},
"lidar1": {
"type": "lidar",
"uri": "https://helenmlopsstorageqatest.blob.core.windows.net/vainewformat/kitti/kitti_small/data/000000000000/data/lidar1/000000000000.pcd",
"description": "Central lidar"
}
},
"metadata": {
"schema_version": "1.0.0"
}
}
}
# validate custom data
# If the data structure doesn't meets the VisionAI requirements, it would raise BaseModel error message
# otherwise, it will returns dictionary of validated visionai data
validated_visionai = VisionAIModel(**custom_visionai_data).dict()
Explanation
To begin, we define our custom VisionAI
data. Subsequently, we employ the VisionAI(**custom_visionai_data).dict()
to ensure the conformity of our custom data with the VisionAI
schema. If there are any missing required fields or if the value types deviate from the defined data types, an error will be raised (prompting a list of VisionAIException
exceptions). On the other hand, if the data passes validation, the function will yield a dictionary containing the validated VisionAI
data.
Validate VisionAI data with given Ontology
Ontology Schema
Before uploading a dataset to the Dataverse
platform, it's advisable to validate VisionAI annotations using the Ontology
schema. The Ontology
schema serves as a predefined structure for Project Ontology
data in Dataverse
."
contexts
: fill this section only if the project ontology is of theclassification
type.objects
: fill this section for project ontologies other thanclassification
, such asbounding_box
orsemantic_segmentation
.streams
: this section is mandatory as it contains project sensor-related information.tags
: complete this section forsemantic_segmentation
project ontologies.
Example
Here is an example of the Ontology
Schema and how to validate VisionAI
data using it:
from visionai_data_format.schemas.ontology import Ontology
custom_ontology = {
"objects": {
"pedestrian": {
"attributes": {
"bbox_shape": {
"type": "bbox",
"value": None
},
"cuboid_shape": {
"type": "cuboid",
"value": None
},
"activity": {
"type": "text",
"value": []
}
}
},
"truck": {
"attributes": {
"bbox_shape": {
"type": "bbox",
"value": None
},
"cuboid_shape": {
"type": "cuboid",
"value": None
},
"color": {
"type": "text",
"value": []
},
"new": {
"type": "boolean",
"value": []
},
"year": {
"type": "num",
"value": []
},
"status": {
"type": "vec",
"value": [
"stop",
"run",
"small",
"large"
]
}
}
},
"car": {
"attributes": {
"bbox_shape": {
"type": "bbox",
"value": None
},
"cuboid_shape": {
"type": "cuboid",
"value": None
},
"color": {
"type": "text",
"value": []
},
"new": {
"type": "boolean",
"value": []
},
"year": {
"type": "num",
"value": []
},
"status": {
"type": "vec",
"value": [
"stop",
"run",
"small",
"large"
]
}
}
},
"cyclist": {
"attributes": {
"bbox_shape": {
"type": "bbox",
"value": None
},
"cuboid_shape": {
"type": "cuboid",
"value": None
}
}
},
"dontcare": {
"attributes": {
"bbox_shape": {
"type": "bbox",
"value": None
},
"cuboid_shape": {
"type": "cuboid",
"value": None
}
}
},
"misc": {
"attributes": {
"bbox_shape": {
"type": "bbox",
"value": None
},
"cuboid_shape": {
"type": "cuboid",
"value": None
},
"color": {
"type": "text",
"value": []
},
"info": {
"type": "vec",
"value": [
"toyota",
"new"
]
}
}
},
"van": {
"attributes": {
"bbox_shape": {
"type": "bbox",
"value": None
},
"cuboid_shape": {
"type": "cuboid",
"value": None
}
}
},
"tram": {
"attributes": {
"bbox_shape": {
"type": "bbox",
"value": None
},
"cuboid_shape": {
"type": "cuboid",
"value": None
}
}
},
"person_sitting": {
"attributes": {
"bbox_shape": {
"type": "bbox",
"value": None
},
"cuboid_shape": {
"type": "cuboid",
"value": None
}
}
}
},
"contexts":{
"*tagging": {
"attributes":{
"profession": {
"type": "text",
"value": []
},
"roadname": {
"type": "text",
"value": []
},
"name": {
"type": "text",
"value": []
},
"unknown_object": {
"type": "vec",
"value": [
"sky",
"leaves",
"wheel_vehicle",
"fire",
"water"
]
},
"static_status": {
"type": "boolean",
"value": [
"true",
"false"
]
},
"year": {
"type": "num",
"value": []
},
"weather": {
"type": "text",
"value": []
}
}
}
},
"streams": {
"camera1": {
"type": "camera"
},
"lidar1": {
"type": "lidar"
}
},
"tags": None
}
# Validate your custom ontology
validated_ontology = Ontology(**custom_ontology).dict()
# Validate VisionAI data with our ontology, custom_visionai_data is the custom data from upper example
errors = VisionAIModel(**custom_visionai_data).validate_with_ontology(ontology=validated_ontology)
# Shows the errors
# If there is any error occurred, it will returns list of `VisionAIException` exceptions
# Otherwise, it will return empty list
# example of errors :
# >[visionai_data_format.exceptions.visionai.VisionAIException("frame stream sensors {'lidar2'} doesn't match with visionai streams sensor {'camera1', 'lidar1'}.")]
print(errors)
Explanation
Begin by creating a new Ontology
that includes the project ontology. Subsequently, use the validate_with_ontology(ontology=validated_ontology)
function to check if the current VisionAI
data aligns with the information in the Ontology
. The function will return a list of VisionAIException
if any issues are detected; otherwise, it returns an empty list.
Converter tools
Convert BDD+
format data to VisionAI
format
(Only support box2D and camera sensor data only for now)
python3 visionai_data_format/convert_dataset.py -input_format bddp -output_format vision_ai -image_annotation_type 2d_bounding_box -input_annotation_path ./bdd_test.json -source_data_root ./data_root -output_dest_folder ~/visionai_output_dir -uri_root http://storage_test -n_frame 5 -sequence_idx_start 0 -camera_sensor_name camera1 -annotation_name groundtruth -img_extension .jpg --copy_sensor_data
Arguments :
-input_format
: input format (use bddp for BDD+)-output_format
: output format (vision_ai)-image_annotation_type
: label annotation type for image (2d_bounding_box
for box2D)-input_annotation_path
: source annotation path (BDD+ format json file)-source_data_root
: source data root for sensor data and calibration data (will find and copy image from this root)-output_dest_folder
: output root folder (VisionAI local root folder)-uri_root
: uri root for target upload VAI storage i.e: https://azuresorate/vai_dataset-n_frame
: number of frame to be converted (-1 means all), by default -1-sequence_idx_start
: sequence start id, by default 0-camera_sensor_name
: camera sensor name (default: "", specified it if need to convert camera data)-lidar_sensor_name
: lidar sensor name (default: "", specified it if need to convert lidar data)-annotation_name
: annotation folder name (default: "groundtruth")-img_extension
: image file extension (default: ".jpg")--copy_sensor_data
:enable to copy image/lidar data
Convert VisionAI
format data to BDD+
format
(Only support box2D for now)
The script below could help convert VisionAI
annotation data to BDD+
json file
python3 visionai_data_format/vai_to_bdd.py -vai_src_folder /path_for_visionai_root_folder -bdd_dest_file /dest_path/bdd.json -company_code 99 -storage_name storage1 -container_name dataset1 -annotation_name groundtruth
Arguments :
-vai_src_folder
: VAI root folder contains VAI format json file-bdd_dest_file
: BDD+ format file save destination-company_code
: company code-storage_name
: storage name-container_name
: container name (dataset name)-annotation_name
: annotation folder name (default: "groundtruth")
Convert Kitti
format data to VisionAI
format
(Only support KITTI with one camera and one lidar sensor)
Important:
- image type is not restricted, could be ".jpg" or ".png", but we will convert it into ".jpg" in
VisionAI
format - only support for
P2
projection matrix calibration information
Currently,only support KITTI
dataset with structure folder :
.kitti_folder
├── calib
│ ├── 000000.txt
│ ├── 000001.txt
│ ├── 000002.txt
│ ├── 000003.txt
│ └── 000004.txt
├── data
│ ├── 000000.png
│ ├── 000001.png
│ ├── 000002.png
│ ├── 000003.png
│ └── 000004.png
├── labels
│ ├── 000000.txt
│ ├── 000001.txt
│ ├── 000002.txt
│ ├── 000003.txt
│ └── 000004.txt
└── pcd
├── 000000.pcd
├── 000001.pcd
├── 000002.pcd
├── 000003.pcd
└── 000004.pcd
Command :
python3 visionai_data_format/convert_dataset.py -input_format kitti -output_format vision_ai -image_annotation_type 2d_bounding_box -source_data_root ./data_root -output_dest_folder ~/visionai_output_dir -uri_root http://storage_test -n_frame 5 -sequence_idx_start 0 -camera_sensor_name camera1 -lidar_sensor_name lidar1 -annotation_name groundtruth -img_extension .jpg --copy_sensor_data
Arguments :
-input_format
: input format (use kitti for KITTI)-output_format
: output format (vision_ai)-image_annotation_type
: label annotation type for image (2d_bounding_box for box2D)-source_data_root
: source data root for sensor data and calibration data (will find and copy image from this root)-output_dest_folder
: output root folder (VisionAI local root folder)-uri_root
: uri root for target upload VAI storage i.e: https://azuresorate/vai_dataset-n_frame
: number of frame to be converted (-1 means all), by default -1-sequence_idx_start
: sequence start id, by default 0-camera_sensor_name
: camera sensor name (default: "", specified it if need to convert camera data)-lidar_sensor_name
: lidar sensor name (default: "", specified it if need to convert lidar data)-annotation_name
: annotation folder name (default: "groundtruth")-img_extension
: image file extension (default: ".jpg")--copy_sensor_data
: enable to copy image/lidar data
Convert COCO
format data to VisionAI
format
python3 visionai_data_format/convert_dataset.py -input_format coco -output_format vision_ai -image_annotation_type 2d_bounding_box -input_annotation_path ./coco_instance.json -source_data_root ./coco_images/ -output_dest_folder ~/visionai_output_dir -uri_root http://storage_test -n_frame 5 -sequence_idx_start 0 -camera_sensor_name camera1 -annotation_name groundtruth -img_extension .jpg --copy_sensor_data
Arguments :
-input_format
: input format (use coco for COCO format)-output_format
: output format (vision_ai)-image_annotation_type
: label annotation type for image (2d_bounding_box for box2D)-input_annotation_path
: input annotation path for coco-label.json file-source_data_root
: image data folder-output_dest_folder
: output root folder (VisionAI local root folder)-uri_root
: uri root for target upload VisionAI storage i.e: https://azuresorate/vai_dataset-n_frame
: number of frame to be converted (-1 means all), by default -1-sequence_idx_start
: sequence start id, by default 0-camera_sensor_name
: camera sensor name (default: "", specified it if need to convert camera data)-annotation_name
: VisionAI annotation folder name (default: "groundtruth")-img_extension
: image file extension (default: ".jpg")--copy_sensor_data
: enable to copy image data
Convert VisionAI
format data to COCO
format
python3 visionai_data_format/convert_dataset.py -input_format vision_ai -output_format coco -image_annotation_type 2d_bounding_box -source_data_root ./visionai_data_root -output_dest_folder ~/coco_output_dir -uri_root http://storage_test -n_frame 5 -camera_sensor_name camera1 -annotation_name groundtruth -img_extension .jpg --copy_sensor_data
Arguments :
-input_format
: input format (vision_ai)-output_format
: output format (use coco for COCO format)-image_annotation_type
: label annotation type for image (2d_bounding_box for box2D)-source_data_root
: visionai local data root folder-output_dest_folder
: output root folder (COCO local root folder)-uri_root
: uri root for target upload for coco i.e: https://azuresorate/coco_dataset-n_frame
: number of frame to be converted (-1 means all), by default -1-camera_sensor_name
: camera sensor name (required for getting the target camera sensor data)-annotation_name
: VisionAI annotation folder name (default: "groundtruth")-img_extension
: image file extension (default: ".jpg")--copy_sensor_data
: enable to copy image data
Convert YOLO
format data to VisionAI
format
python3 visionai_data_format/convert_dataset.py -input_format yolo -output_format vision_ai -image_annotation_type 2d_bounding_box -source_data_root ./path_to_yolo_format_dir -output_dest_folder ./output_visionai_dir -n_frame -1 -sequence_idx_start 0 -uri_root http://storage_test -camera_sensor_name camera1 -annotation_name groundtruth -img_extension .jpg --copy_sensor_data -classes_file category.txt
Arguments :
-input_format
: input format (use yolo for YOLO format)-output_format
: output format (vision_ai)-image_annotation_type
: label annotation type for image (2d_bounding_box for box2D)-source_data_root
: data root folder of yolo format-output_dest_folder
: output root folder (VisionAI local root folder)-uri_root
: uri root for target upload VisionAI storage i.e: https://azuresorate/vai_dataset-n_frame
: number of frame to be converted (-1 means all), by default -1-sequence_idx_start
: sequence start id, by default 0-camera_sensor_name
: camera sensor name (default: "", specified it if need to convert camera data)-annotation_name
: VisionAI annotation folder name (default: "groundtruth")-img_extension
: image file extension (default: ".jpg")--copy_sensor_data
: enable to copy image data-classes_file
: txt file contain category names in each line, by default "classes.txt"-img_height
: image height for all images (default: None, which will read the image and get the size)-img_width
: image width for all images (default: None, which will read the image and get the size)
- The
YOLO
dataset should follow the data structure as below:
.yolo-format-root_folder
├── classes.txt
├── images
│ ├── 000000.png
│ ├── 000001.png
│ ├── 000002.png
│ └── 000003.png
├── labels
│ ├── 000000.txt
│ ├── 000001.txt
│ ├── 000002.txt
│ ├── 000003.txt
Convert VisionAI
format data to YOLO
format
python visionai_data_format/convert_dataset.py -input_format vision_ai -output_format yolo -image_annotation_type 2d_bounding_box -source_data_root ~/path-to-visionai-root-folder -output_dest_folder ./path-to-yolo-output-folder -n_frame 5 -camera_sensor_name camera1 -annotation_name groundtruth -img_extension .jpg --copy_sensor_data
Arguments :
-input_format
: input format (vision_ai)-output_format
: output format (use coco for COCO format)-image_annotation_type
: label annotation type for image (2d_bounding_box for box2D)-source_data_root
: visionai local data root folder-output_dest_folder
: output root folder (output local root folder)-n_frame
: number of frame to be converted (-1 means all), by default -1-camera_sensor_name
: camera sensor name (required for getting the target camera sensor data)-annotation_name
: VisionAI annotation folder name (default: "groundtruth")-img_extension
: image file extension (default: ".jpg")--copy_sensor_data
: enable to copy image data
Troubleshooting
(WIP)
Next steps
(WIP)
Contributing
(WIP)
Links to language repos
(WIP)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file visionai_data_format-1.4.0.tar.gz
.
File metadata
- Download URL: visionai_data_format-1.4.0.tar.gz
- Upload date:
- Size: 51.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e406cca170c2bd67957a5e4685d2b17c5f7cf32c7f1c5b68b3e0b0273b5bf89 |
|
MD5 | 5ec57876e8905daaa0188e4158ddcfc5 |
|
BLAKE2b-256 | 63049ad79f717838115ff4ad315e951753962b0c6ee0dd06716e9e677501d0b9 |
File details
Details for the file visionai_data_format-1.4.0-py3-none-any.whl
.
File metadata
- Download URL: visionai_data_format-1.4.0-py3-none-any.whl
- Upload date:
- Size: 59.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0796e0ea6c2db61fb0bf29444be364417db694ed973bc5a35ea357e7798fe487 |
|
MD5 | 9928e0073960b048ecdd345c752e4e27 |
|
BLAKE2b-256 | 29df7352f3f04a6e35c65e4afd1ff980d7179099dc7436e1dd47cc6f4df45eff |