Skip to main content

Vision AI toolkit

Project description

edgectl

Edge device, cameras & scenarios controller.

Overview

  1. Start the server instance
make server.install
make server.start
  1. Run this utility through docker:
make cli.install
make cli.start

# Run python edgectl.py utility from within container
python3 edgectl.py --get-cameras
  1. OR Run CLI from host machine
# Run python edgectl.py utility from host machine
python3 edgectl.py --get-cameras

Commands

The following set of commands are supported.

  • TODO: Instead of using IoT Hub connection string - support it via an API key that is generated from our website.
  • TODO: Make edgectl into its own repo (public). Create nice documentation on how this can be used in Gitbooks.
  • TODO: Connection string to API key translation through Azure Keyvault

After the edgectl configured, we can run the following commands.

# Configure edgectl
python3 edgectl.py --setup --api-key <api-key>

#  Run edgectl utility
python3 edgectl.py \
    # Device
    --list-devices                          # list devices
    --use-device <device-id>                # set default device to use
    --list-modules                          # list running modules status
    --gpu-stats                             # get device's GPU stats
    --mem-stats                             # get device's memory stats
    --scenarios-health                      # how many more scenarios can run

    # Scenarios
    --list-all-scenarios                    # list all available scenarios
    --list-scenarios                        # list running scenarios for a camera
        --camera <camera-name>
    --start-scenario <scenario-name>        # start a scenario for a camera
        --camera <camera-name>
    --stop-scenario <scenario-name>         # stop a scenario for a camera
        --camera <camera-name>

    # Cameras
    --list-cameras                          # list cameras
    --add-camera <camera-name>              # add a camera
        --camera-uri <camera-uri>
    --remove-camera <camera-name>           # remove camera

    # Livestream
    --start-livestream <camera-name>        # start live-stream for camera
    --stop-livestream <camera-name>         # stop live-stream for camera

    # Events
    --list-events                           # list supported events
        --scenario  <scenario-name>

    --event-details                         # list details for an event
        --scenario <scenario-name>
        --event <event-name>

    --event-log                             # list last few events from camera
        --camera <camera-name>
        --last <duration-seconds>

    # Simulation
    --simulate-event                        # simulate generating an event
        --camera <camera-name>
        --scenario <scenario-name>
        --event <event-name>
        --event-data <event-data>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

visionai-0.1.1.tar.gz (11.5 kB view hashes)

Uploaded Source

Built Distribution

visionai-0.1.1-py3-none-any.whl (14.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page