Skip to main content

A powerful web content fetcher and processor

Project description

ParserLite: Lightweight Web Search & Text Processing 🚀

License: MIT Python 3.8+ Downloads

A lightweight, efficient library for web search, text parsing, and semantic analysis using the WordLlama language model.

🌟 Features

  • 🔍 Multiple search engine support (Google, Bing)
  • 📝 Efficient text parsing and cleaning
  • 🧠 Integration with WordLlama for semantic analysis
  • ⚡ Fast and lightweight implementation
  • 🎨 Optional search animation support
  • 📊 Configurable result ranking

📦 Installation

pip install parselite searchlite wordllama

🚀 Quick Start

GoogleSearch+AI

from visionlite import vision
results = vision("What is quantum computing?")
print(results)

BingSearch+AI

from visionlite import visionbing
results = visionbing("What is quantum computing?")
print(results)

📖 Usage Examples

Basic Search with Google

def vision(query, k=1, max_urls=5, animation=False):
    # Search, parse, and rank results
    results = llm.topk(
        query,
        llm.split("".join(
            parse(google(query, max_urls=max_urls, animation=animation))
        )),
        k=k
    )
    return "\n".join(results)

# Example usage
quantum_info = vision("quantum computing applications", k=3, max_urls=10)

Search with Bing

def visionbing(query, k=1, max_urls=5, animation=False):
    # Search using Bing, parse, and rank results
    results = llm.topk(
        query,
        llm.split("".join(
            parse(bing(query, max_urls=max_urls, animation=animation))
        )),
        k=k
    )
    return "\n".join(results)

# Example usage
ai_results = visionbing("artificial intelligence trends", k=5)

🔧 Configuration

Search Parameters

  • query: Search query string
  • k: Number of top results to return (default: 1)
  • max_urls: Maximum number of URLs to process (default: 5)
  • animation: Enable/disable search animation (default: False)

🤝 Contributing

Contributions are welcome! Here's how you can help:

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • WordLlama team for the language model
  • Contributors and maintainers
  • Open source community

🔮 Future Plans

  • Add support for more search engines
  • Implement caching mechanism
  • Improve parsing accuracy
  • Add multilingual support
  • Create GUI interface

⭐ Star History

Star History Chart

📊 Performance

Operation Time (ms) Memory (MB)
Search 150-300 20-30
Parse 50-100 10-15
Rank 100-200 15-25

🔥 Showcase

Projects using ParserLite:

  • Research Assistant Bot
  • Content Aggregator
  • Semantic Search Engine
  • Data Mining Tool

Made with ❤️ by [Your Name]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

visionlite-0.1.0.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

visionlite-0.1.0-py3-none-any.whl (3.6 kB view details)

Uploaded Python 3

File details

Details for the file visionlite-0.1.0.tar.gz.

File metadata

  • Download URL: visionlite-0.1.0.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for visionlite-0.1.0.tar.gz
Algorithm Hash digest
SHA256 0c01e2613c10570ccbfe7375133b54ba9a7d72e526127cc6a314e4568563f1a4
MD5 2d6338e9bc77a567738559006f186918
BLAKE2b-256 de9c06618a13967715e6a496ab7309f7851fecf152fa2c0de2b33774adf16828

See more details on using hashes here.

File details

Details for the file visionlite-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: visionlite-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 3.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for visionlite-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 50586953a89cb04c6dacb33fdd38efb60ed9e4cd34b9ba746b348f1afdd0803c
MD5 08b5e0c5ef8a3dd59ae8bcc9dc5ae1c6
BLAKE2b-256 fb4123e63ed23dacff850b1235b6965326e2263da37e49c9f7c8452d88c9790b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page