Skip to main content

Utilities for deep learning on multimodal data.

Project description

visiontext

minimal build 3.8 status minimal build 3.10 status minimal build 3.12 status
full build 3.8 status full build 3.10 status full build 3.12 status
coverage version

Utilities for deep learning on multimodal data.

  • jupyter notebooks / jupyter lab / ipython
  • matplotlib
  • pandas
  • webdataset / tar
  • pytorch

Install

Requires python>=3.8 pytorch sqlite

pip install visiontext

Full build

Additionally requires libjpeg-turbo:

pip install visiontext[full]

Dev install

Clone repository and cd into, then:

pip install pytest pytest-cov pylint black[jupyter]
pylint visiontext
pylint tests

# full build
pip install -e .[full]
python -m pytest --cov

# minimal build
pip install -e .
python -m pytest --cov -m "not full"

Changelog

  • 0.10.1: Test with python 3.12
  • 0.8.1: Set minimum python version to 3.8 since PyTorch requires it

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

visiontext-0.20.1.tar.gz (46.7 kB view details)

Uploaded Source

Built Distribution

visiontext-0.20.1-py3-none-any.whl (55.2 kB view details)

Uploaded Python 3

File details

Details for the file visiontext-0.20.1.tar.gz.

File metadata

  • Download URL: visiontext-0.20.1.tar.gz
  • Upload date:
  • Size: 46.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for visiontext-0.20.1.tar.gz
Algorithm Hash digest
SHA256 6d3fd084b6f3bba316b17e22bd80f4f7cb40e0423819e9ce858935965bf0688d
MD5 9b7723ada6f7438e6befc7fadafda289
BLAKE2b-256 aabb07d5271d6ee5531dc2066b1a3b1ec7e5a1e02a8fda6be3bbf6c0fc19df26

See more details on using hashes here.

File details

Details for the file visiontext-0.20.1-py3-none-any.whl.

File metadata

  • Download URL: visiontext-0.20.1-py3-none-any.whl
  • Upload date:
  • Size: 55.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for visiontext-0.20.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2d562a03f4e7159ec3b4f8a276fca9011a6ec52e8598c90405fa17b99d7b4e17
MD5 72e53a5423b5592d27fca71e1787edbd
BLAKE2b-256 9bab538a010a38671999a1c9295d48c61853ff246b46fc9c363dd8fddb498972

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page