Skip to main content

Utilities for deep learning on multimodal data.

Project description

visiontext

minimal build 3.8 status minimal build 3.10 status minimal build 3.12 status
full build 3.8 status full build 3.10 status full build 3.12 status
coverage version

Utilities for deep learning on multimodal data.

  • jupyter notebooks / jupyter lab / ipython
  • matplotlib
  • pandas
  • webdataset / tar
  • pytorch

Install

Requires python>=3.8 pytorch sqlite

pip install visiontext

Full build

Additionally requires libjpeg-turbo:

pip install visiontext[full]

Dev install

Clone repository and cd into, then:

pip install pytest pytest-cov pylint black[jupyter]
pylint visiontext
pylint tests

# full build
pip install -e .[full]
python -m pytest --cov

# minimal build
pip install -e .
python -m pytest --cov -m "not full"

Changelog

  • 0.10.1: Test with python 3.12
  • 0.8.1: Set minimum python version to 3.8 since PyTorch requires it

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

visiontext-0.20.2.tar.gz (46.8 kB view details)

Uploaded Source

Built Distribution

visiontext-0.20.2-py3-none-any.whl (55.2 kB view details)

Uploaded Python 3

File details

Details for the file visiontext-0.20.2.tar.gz.

File metadata

  • Download URL: visiontext-0.20.2.tar.gz
  • Upload date:
  • Size: 46.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for visiontext-0.20.2.tar.gz
Algorithm Hash digest
SHA256 f765df86d32f09539d5154dd0118b525399f263ffb5c7237163e81a424a0c325
MD5 bede2bb680a800a397874edc9fdecaa0
BLAKE2b-256 310f2039b442743cd3c5ffacc3e8aaf9eab84a6b28e857c60a08e8d6db2a1e8c

See more details on using hashes here.

File details

Details for the file visiontext-0.20.2-py3-none-any.whl.

File metadata

  • Download URL: visiontext-0.20.2-py3-none-any.whl
  • Upload date:
  • Size: 55.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for visiontext-0.20.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5851eb113c2d07658471299fbc33b594f3ffd8cd6a2c0184b04ce72916898a74
MD5 5683a8449ddf668046f9bfd5a71f2e63
BLAKE2b-256 9b33aa08961ae9dc7e9c1e7bc97a9738248f11dec41baa35cec7e83c00da2d34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page