Skip to main content

A visualation tool for 1D networks

Project description

VisNet1D

A simple visualisation tool for 1D networks.

An image of visnet1d

Installation

Use in your project

Python Package Index (PIP):

pip install visnet1d

Poetry:

poetry add visnet1d

Use the development version

Git:

git clone git@gitlab.com:abdrysdale/visnet1d.git
nix-shell
poetry install
poetry shell

Installation instructions for nix can be obtained from here. If you don't have and don't want to install nix, it is sufficient to just install poetry and skip the nix-shell command. Poetry installation instructions can be obtained from here.

Just want to run the examples?

If you just want to run one of the examples, such as the vessel network example:

pip install visnet1d
git clone git@gitlab.com:abdrysdale/visnet1d.git
cd visnet1d

The run the desired example script with:

python examples/vessel_network.py

Naturally replacing vessel_network.py with any of the other examples. Next, go to http://127.0.0.1:8050 in your browser and start exploring!

Usage

VisNet1D is intended to be used to visualise signals across a 1-dimensional network at potentially multiple locations. It can either be used to explore an output of an other function, viewing signal(s) at different locations and comparing the results or it can be used to visualise the change in a function output due to a change in inputs.

An example usage is shown below:

First import the library:

import visnet1d

Now we define a simple function that takes a spatial argument along with other keyword arguments. This function returns y as a function of t at some spatial point x. It must return two vectors to be compatible with the default plotting function. But don't worry! You can define your own plotting functions - we'll get to that later.

def foobar(x, tmax=1, a=2, b=3):
    t = np.linspace(0, tmax, 100)
    y = a * np.sin(x + 2 * np.pi * t / b)
    return y, t

Here we define a list for the function input arguments. These are used to display the inputs on the web-page and pass the results to the function foobar.

input_dict_list = [
    {
        "name" : "Amplitude",   # Name to be displayed on the web app.
        "id" : "a",             # Internal id and keyword argument for the function (foobar).
        "value" : 1,            # Initial value.
        "type" : "number",      # Used by Dash to determine the input type.
    },
    {
        "name" : "Period",
        "id" : "b",
        "value" : 2,
        "type" : "number",
    },
    {
        "name" : "Maximum t",
        "id" : "tmax",
        "value": 1,
        "type" : "number",
    },
]

The allowed types that dash input accepts can be found here.

Next we need to define the boundaries that separate locations. To illustrate this, let's consider two vessels connected in series:

boundaries = {     # Locations can be selected from a drop-down menu
        "Vessel 1" : [0, np.pi],          # [Start, End]
        "Vessel 2" : [np.pi, 3 * np.pi],  
}

Now we create a site object and run the site.

site = visnet1d.Site(
        foobar,             # Function to plot.
        boundaries,         # Locations to select.
        input_dict_list,    # List of function inputs (each input has it's own dictionary).
        xlab="Time (s)",    # X-axis label
        ylab="Response",    # Y-axis label
        title="My title",   # Title
)

# Runs the server with the default arguments - same as site.run()
site.run(host="127.0.0.1", port="8050", debug=False)

Go to 127.0.0.1:8050 on your web browser view the webapp.

Custom plots

Custom plot functions can be utilised using the plot keyword argument for the visnet1d.Site class. E.g.

site = visnet.Site(
    my_function,
    my_boundaries,
    my_input_dictionary_list,
    plot=my_custom_plot_function, # <- This is how you pass your custom plot function.
)

A few things to note about writing custom plotting functions:

  • The function must take the Site object as the only input argument.
  • The function must return a plotly figure.

A few notable attributes of the Site class:

  • site.function_kwargs : Is a list of dictionaries of the inputs defined by the input_dict_list argument. These are the values that you can change in the inputs section in the webapp.
  • site.boundaries : The boundaries defined by the boundaries argument.
  • site.loc_slider_vals : A dictionary of all of the slider positions for all of the previously selected locations. The dictionary is of the format location : value. Where location is the location key used in the boundaries argument and value is the value of the slider.
  • site.loc_keys : A list of the locations currently selected. Where each location is the key used in the boundaries argument.
  • site.x : The current position of the active slider.

Exploring a static output

By default, VisNet1D evaluates the function each time an input is changed. For a very expensive function this isn't ideal. Moreover, there might be use case whereby the outputs of very complicated network have been produced by some other expensive function and you just wish to use VisNet1D to explore the output.

Here's how you'd do something like that:

my_outputs = visnet1d.get_static_function(out_mat, t, axis=0)

First use the inbuilt function get_static_function() to handle static outputs. This function needs to be passed the 2D output matrix and the value for the x-axis. The output matrix might be something like a signal as a function of space and time.

Moreover, as the outputs are static there are no function inputs so we can do away with the input_dict_list argument. This is done like so:

site = visnet.Site(
    my_outputs,
    my_boundaries,
    input_dict_list=None,
)

Customising plots

By default all the plots are editable and you can pass the x axis label, y axis label and title into the site object with the following:

site = visnet.Site(
    my_function,
    my_boundaries,
    my_input_dictionary_list,
    xlab=my_x_label,
    ylab=my_y_label,
    title=my_title,
)

Moreover, the width of the graph itself can be controlled by using:

site = visnet.Site(
    my_function,
    my_boundaries,
    my_input_dictionary_list,
    gwidth=80, # This sets the width of the graph to be 80% of the screen width.
)

It is also possible to display an optional image underneath the input section to aid network visualisation:

site = visnet.Site(
    my_function,
    my_boundaries,
    my_input_dictionary_list,
    image='path/to/my/image.png'    # Any Pillow supported image format can be used
    iheight=80,                     # Adjusts the image height to be 80% of the screen height.
)

Examples

For full examples see the examples/ directory.

Contributing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

visnet1d-0.1.4.tar.gz (20.7 kB view details)

Uploaded Source

Built Distribution

visnet1d-0.1.4-py3-none-any.whl (20.4 kB view details)

Uploaded Python 3

File details

Details for the file visnet1d-0.1.4.tar.gz.

File metadata

  • Download URL: visnet1d-0.1.4.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.0 CPython/3.10.9 Linux/6.1.14-200.fc37.x86_64

File hashes

Hashes for visnet1d-0.1.4.tar.gz
Algorithm Hash digest
SHA256 351bee93aad9d2225582b804b990ba2b04c756a33d9d2f6a2bc0eb6ea4cea2d9
MD5 26b2f62cf48e078cdacaefe044c3b630
BLAKE2b-256 614ebb816393d5863c1cbd2e5ecba4b73703d4de101674d4fc356f96da98c675

See more details on using hashes here.

File details

Details for the file visnet1d-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: visnet1d-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 20.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.0 CPython/3.10.9 Linux/6.1.14-200.fc37.x86_64

File hashes

Hashes for visnet1d-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 89a5784ab2942124687e7edff0632f962df280193a6bc536d3e94ce984444e36
MD5 8c872a1333d3ad554b1a54b62a8bcc84
BLAKE2b-256 24414f70f0962b5a30adc552b53ca3e78833a56d80d0f036255b25420458f086

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page