Skip to main content

A visulisation package for process mining activties

Project description

VISPM: Visualisations for Process Mining

A python library for creating visualisations related to process mining, all graphs are generated using matplotlib.

What is it?

This package provides an interface for making exciting visualisations about process mining. Process mining can be a purely technical endeavour at times, and having an easy way to visualise concepts is essential. To encourage others to overcome the technical components of process mining, sometimes having an engaging animation will do just that. A key difference between other data science domains and process mining, is that process mining outcomes often will have a visual interpretation that others don’t. We need more ways to emphasise this aspect, and this project is one such way.

The goal of vispm is to:

  • Have fun and create some cool stuff.
  • Make exciting process mining visualisation that would aspire others.
  • Create a layered interface supporting three levels: quick-easy access, general templates for specific use cases, super customisation via class objects.

Main Features

Here is a list of supported process mining visualisations:

Dotted Charts

This chart is the only visualisation available within the project so far. In this visualisation, we plot events across a time axis, and we can change how events are coloured depending on the type analysis. We currently support colouring events via trace or event label but offer a template for customer colourers.

Static Presentors

This section is currently being worked on and is unstable.

Below is an example of generating a dotted chart from an event log. While we do not require that you use pm4py as the importer, we suggest you use the library to handle xes or xes.gz files. The StaticDottedChartPresentor has several optional parameters that allow users to change the type of colourer used (trace, event label or custom), figure parameters (dpi, size, markersize) and the colourmap used for colouring. See the doc string for more information.

from vispm import StaticDottedChartPresentor
from matplotlib import pyplot as plt

# not required but a very helpful and cool library
from pm4py import read_xes

from os.path import join 

LOG_FILE = join(".","BPI_Challenge_2012.xes.gz")

def main():
    log = read_xes(LOG_FILE)
    presentor = StaticDottedChartPresentor(log)
    presentor.plot()
    plt.show()

if __name__ == "__main__":
    main()

Below are some examples of using this class and playing around with custom colourers.

Dotted Chart for BPIC 2012 Dotted Chart for BPIC 2017
Extensions

Below are some examples of extensions that can be added to this extension before ploting.

DottedColourHistogramExtension

This extension plots a histogram based on the events within a dotted chart. Events will be broken down by colour for each bin.

from vispm import StaticDottedChartPresentor,DottedColourHistogramExtension

presentor = StaticDottedChartPresentor(log,dpi=100,
    event_colour_scheme=StaticDottedChartPresentor.EventColourScheme.EventLabel,
    colormap=HIGH_CONTRAST_COOL
)
ext = DottedColourHistogramExtension(direction=DottedColourHistogramExtension.Direction.NORTH)
presentor.add_extension(ext)
ext = DottedColourHistogramExtension(direction=DottedColourHistogramExtension.Direction.SOUTH,
         bin_axes=DottedColourHistogramExtension.PlotAxes.X)
presentor.add_extension(ext)
ext = DottedColourHistogramExtension(direction=DottedColourHistogramExtension.Direction.WEST)
presentor.add_extension(ext)
ext = DottedColourHistogramExtension(direction=DottedColourHistogramExtension.Direction.EAST,
         bin_axes=DottedColourHistogramExtension.PlotAxes.X)
presentor.add_extension(ext)
presentor.plot()
Dotted Chart with Colour Histogram Dotted Chart with Colour Histogram
DottedEventHistogramExtension

This extension plots a histogram based on the events within a dotted chart. Events will be broken down by the label for each event in each bin. This extension uses a colour imputer that is independent of the graph, meaning different colour schemes can be used for each extension.

  1. setup up colour schemes to use
from vispm.helpers.colours.colourmaps import HIGH_CONTRAST_COOL,HIGH_CONTRAST_WARM
from vispm.helpers.colours.colourmaps import EARTH,COOL_WINTER,

import numpy as np
from matplotlib.colors import ListedColormap
from matplotlib.cm import get_cmap

colourmaps = [COOL_WINTER,EARTH,HIGH_CONTRAST_COOL,HIGH_CONTRAST_WARM]
seq_colourmap = np.vstack(
    (
    colourmaps[0](np.linspace(0.20,1,8)),
    colourmaps[1](np.linspace(0.20,1,8)),
    colourmaps[2](np.linspace(0.20,1,8)),
    colourmaps[3](np.linspace(0.20,1,8))
    )
)
seq_colourmap = ListedColormap(seq_colourmap, name='VARIANCE')
cmap = get_cmap(HIGH_CONTRAST_COOL, 26)
  1. create a presentor and add extensions
presentor = StaticDottedChartPresentor(log,dpi=100,
    event_colour_scheme=StaticDottedChartPresentor.EventColourScheme.EventLabel,
    colormap=cmap
)

ext = DottedEventHistogramExtension(
    direction=DottedEventHistogramExtension.Direction.SOUTH,
    bin_axes=DottedEventHistogramExtension.PlotAxes.X,
    colourmap=seq_colourmap
)
presentor.add_extension(ext)
ext = DottedEventHistogramExtension(
    direction=DottedEventHistogramExtension.Direction.NORTH,
    bin_axes=DottedEventHistogramExtension.PlotAxes.Y,
    colourmap=seq_colourmap
)
presentor.add_extension(ext)
ext = DottedEventHistogramExtension(
    direction=DottedEventHistogramExtension.Direction.WEST,
    bin_axes=DottedEventHistogramExtension.PlotAxes.Y,
    colourmap=cmap
)
presentor.add_extension(ext)
ext = DottedEventHistogramExtension(
    direction=DottedEventHistogramExtension.Direction.EAST,
    bin_axes=DottedEventHistogramExtension.PlotAxes.X,
    colourmap=cmap
)
presentor.add_extension(ext)

presentor.plot()
Dotted Chart with Event Histogram

DescriptionHistogramExtension

This extension describes an aspect of the event log. For example, a breakdown of trace duration, or trace length (by the number of activities), or event label, or when events occur (weekday or monthday).

The following example shows how to use this extension to understand the properties of event log, alongside a dotted chart.

cmap = get_cmap(HIGH_CONTRAST_COOL, 26)
presentor = StaticDottedChartPresentor(log,dpi=100,
    event_colour_scheme=StaticDottedChartPresentor.EventColourScheme.EventLabel,
    colormap=cmap
)

ext = DescriptionHistogramExtension(
)
presentor.add_extension(ext)

ext = DescriptionHistogramExtension(
    direction=DescriptionHistogramExtension.Direction.EAST,
    describe=DescriptionHistogramExtension.Describe.TraceLength,
    density=DescriptionHistogramExtension.Density.Event
)
presentor.add_extension(ext)

ext = DescriptionHistogramExtension(
    direction=DescriptionHistogramExtension.Direction.SOUTH,
    describe=DescriptionHistogramExtension.Describe.TraceDuration,
    density=DescriptionHistogramExtension.Density.Trace
)
presentor.add_extension(ext)

ext = DescriptionHistogramExtension(
    direction=DescriptionHistogramExtension.Direction.WEST,
    describe=DescriptionHistogramExtension.Describe.Monthday,
    density=DescriptionHistogramExtension.Density.Event
)
presentor.add_extension(ext)

presentor.plot()
Dotted Chart with Description Histogram

Running Presentors

More on these in upcoming updates.

Complex Template Presentors

More on these in upcoming updates.

Where to get it

The source code is currently available on GitHub: https://github.com/AdamBanham/vispm

Installers for the latest released versions are available at the Python Package Index (PyPI): https://pypi.org/project/vispm/

To install the package, use the following command.

pip install vispm

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispm-0.0.6.2.tar.gz (22.0 kB view details)

Uploaded Source

Built Distribution

vispm-0.0.6.2-py3-none-any.whl (26.7 kB view details)

Uploaded Python 3

File details

Details for the file vispm-0.0.6.2.tar.gz.

File metadata

  • Download URL: vispm-0.0.6.2.tar.gz
  • Upload date:
  • Size: 22.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for vispm-0.0.6.2.tar.gz
Algorithm Hash digest
SHA256 6b7603ca29c697d026bd810c6b0187c1b5a7ae945da88335a06f2bc603a1406a
MD5 f36930f0d448ebd0bd07bf1b773dd60e
BLAKE2b-256 e7cb7339545e1ea3b6839773233c3896003ed7ff24ee9282ccad4e78f227a6ff

See more details on using hashes here.

File details

Details for the file vispm-0.0.6.2-py3-none-any.whl.

File metadata

  • Download URL: vispm-0.0.6.2-py3-none-any.whl
  • Upload date:
  • Size: 26.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for vispm-0.0.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9f1347f0ed71dbe62dc6ce2d9de7a40a74410a18e41b9abbc240877cb6b315cb
MD5 2e9ad69d5ca1f9aba35807eb54d25f9f
BLAKE2b-256 5966c9f1757de0fa0504a2cb26fae53e5241bb0748989fc1874511f78db03253

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page