Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See CHANGELOG.md.

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Governance

The VisPy project maintainers make decisions about the project based on a simple consensus model. This is described in more detail on the governance page of the vispy website as well as the list of maintainers.

In addition to decisions about the VisPy project, there is also a steering committee for the overall VisPy organization. More information about this committee can also be found on the steering committee page of the vispy website, along with the organization’s charter and other related documents (linked in the charter).

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

vispy-0.15.0-cp313-cp313-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.13 Windows x86-64

vispy-0.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

vispy-0.15.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

vispy-0.15.0-cp313-cp313-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

vispy-0.15.0-cp313-cp313-macosx_10_13_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

vispy-0.15.0-cp312-cp312-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

vispy-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

vispy-0.15.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

vispy-0.15.0-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

vispy-0.15.0-cp312-cp312-macosx_10_13_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

vispy-0.15.0-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

vispy-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

vispy-0.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

vispy-0.15.0-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

vispy-0.15.0-cp311-cp311-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

vispy-0.15.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

vispy-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

vispy-0.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

vispy-0.15.0-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

vispy-0.15.0-cp310-cp310-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

vispy-0.15.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

vispy-0.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

vispy-0.15.0-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

vispy-0.15.0-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file vispy-0.15.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: vispy-0.15.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for vispy-0.15.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 25c8f3f49aa9154ca192c7ad44a8dc0f424adaf518373fdd538dba1bb6ae146f
MD5 ca7517c7c8ac7163b026c90456164cc4
BLAKE2b-256 75cecd94b4988811c669d0684da685a602afb42d18aeb659af8fcfba16c41ef7

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c89f3c8e459dce4e62c43d411f7d78c78b77765117382a82a6e22d52fcdd5a4
MD5 e0e4923a9aecb5dbaf039e722ae1ebaa
BLAKE2b-256 ca106d75558fbe6ebab72ba3a8737a4012482aca4524d50c7007d4695eb03276

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4926f36d5736ce4c1f97c9f437ab4f0790c5966d0b8dd01a3d821f9846bd3d88
MD5 eaa3050714fb42e91cc07de73bf6dee4
BLAKE2b-256 3f39d293486a49d1774df4a6a64fbec17b261201e3df690d02d1af8a70329658

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a60c905fbfbd31cc4fa5a1527a133ed2c9dc61e3d295efc9b1ec0d492c1170b5
MD5 2daec4e2481a21c14aa54dbf4e9de044
BLAKE2b-256 9929ceb2e7c69c4bd28c372483505c8c9c8c2914e0049d0fa0c2ba258fb67e02

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a9212f7345a0e80413e64eb6583ec8d398e9a16da47a0090be9effb08f4c8ac3
MD5 8ab064b88e23e40fba1be44970b29f54
BLAKE2b-256 946b20066c509f7af1306b39b58842a8186db686e6e0b572da6ecf432de7a549

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: vispy-0.15.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for vispy-0.15.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 672f67e67fc43305def775c0c2d59421a50a0b2d34171bd6822fb8d8a099a9f7
MD5 54862a1876a0dfe663824a9ad5ce8ca5
BLAKE2b-256 d71cab4df761a136ba16336bff344fbf54ed59d4f3a6c955108594e7804c1231

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80b4e4ae6eb0eccd73abaa04a0d6c78e35f80479fc469a34513f5b2925a1e761
MD5 3a6fa02534f672cc86f217942e914899
BLAKE2b-256 ecba7d32a3da1228ebf911693ce0d7917ff2a536dc70c0b030591607a734d92f

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a31855c8ba7022b94fa027be0151da888d92b3609ee99482f39b4ffffd03206
MD5 a92e79ef36939347755b2baff84f723e
BLAKE2b-256 0209238aa684886e7eca37c2625e359a33f154da67ebc2ea4549afc366f63d78

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ccbe1472c5f2b0e25a435ec36bbc74d3e4f9a9f02ac26e9f4b781383f8d821a4
MD5 0189da8c243da6a184520bbf8c6e9af3
BLAKE2b-256 e0bcc1a2db4438a3ed1057116c603f148ad31100021626becef9ccad322535c0

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c15688785f06d6a3a16c94ff06322bf4f7689de6f96956a81b31a20dcc43ddfd
MD5 256fb10233a2c43a6e8b68fb235796b9
BLAKE2b-256 cd57c97ae1f461506b83089b7820aade992bfbab556aeb29201d0720267c7907

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: vispy-0.15.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for vispy-0.15.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9edfea314fa06a526bdf89d91584e9cb1af5f4305952b492f371ba3f9a147074
MD5 a166774b73c9d830d732c5f12ba095b7
BLAKE2b-256 7d292edd4f59e3e145b4dad4a9c5bbb6731977d58114c7b4160fd41752e2fd31

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5d311d575c0ecc164a8b69f8e31ad10314e1237c564a354af6e90e0282b007e
MD5 f75a13919b16575f63f71f973431bf87
BLAKE2b-256 1b5f13f80f6197e9f4639b0e92a7aeb0f3b19c27d0d1394439ce23c012e18d8d

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a12d1dd933173831e728f4d5ae44d2c5a1e7f3abcd18c1ccf78081e8a3a7d814
MD5 8144fa41629cc790de99757c78cfbeef
BLAKE2b-256 449008e0bbd7f8c199bc683c32374a217fd7d4702ac2dcf39f6b2f37f1db7e97

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8970f533cc20934f413012d55f88deb08da47635810f03a381679e379c3479a1
MD5 2410d2dd6b116b68ba4226827219f4ac
BLAKE2b-256 381a4d256e6c3a6cc32366c23b89181ffbf33b1dbc4e41c03aec396d2b43e00a

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d963aa18c07b09dc5b78305a1dfddc165f867995d3d9df26d98a6efbf4794a3c
MD5 75be0d385e11272ef03aef9daa2ea929
BLAKE2b-256 f7eec91c9935ae7e50545b1623a2b37ce3c8b2d2322c5f0b7c32386628fb0078

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vispy-0.15.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for vispy-0.15.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c6d219f3d3682c7ac3a95605e36f4ec458c5b0c91a9a9e552016bb0da3b7c782
MD5 56dd6bceec4d703224d67b8baf0a898e
BLAKE2b-256 50ce08fd342770038afa4b7cf7bad1500de4e4bf846f4a2b3af1b206d50fbe80

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdeb9462aace7f8ad083b7dfa35d7b2d176c6a542cdb42ddef0fb541272949c6
MD5 de9fb9359dc235ddc37a6e0abeeab0eb
BLAKE2b-256 49df582544d6ea5fc2c7b72bdd325579bc7437b33089f25040521f2513c0196d

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 57044c9d4af495c8fc31f9c087fa698007302c02451dea7a0530c163236d1264
MD5 671b809a51a96f3dc54295483739adab
BLAKE2b-256 03a8f63b756d316af478892c97d50933409d7fb516c06bd0d1ccc4bf9034730a

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5b8cef2267177920f1f1056e0c3c0e52b97957ea18a3e64f5ce9ca0cedaedf6
MD5 5810ecfbe8d4deb248efbafbd61a1cf4
BLAKE2b-256 2723e9dfad945b36df3faa616331b3d9c9009c95928d399cc1137ac642dae029

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 03384a45cb1e356b96542a39964c0d7e80d505d101555dc5cf4b694b39e6583b
MD5 cacae0f192970ce89c6c9d9fa99cd09e
BLAKE2b-256 ada7cf7783ec7bd3b8baa7e1eb2701c0e9bd11dcb5f091b267d9612c5d1d90a3

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.15.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for vispy-0.15.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a120b1e8ae3f8d223d9562f0f0ab21f020bdbc760e242cdf7ffa88ca0f7ad735
MD5 28641dfb1670fce4bfb44322e19e0420
BLAKE2b-256 b47376a213913e0b4567427303cbaed0dc6b7ccb6824e0173f0361ce0d0e379a

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3bc82adb81d2fe708024d4dc03b244a2cf36232b11dfb50563dac47ff0e5e4b
MD5 4bc44a53cf955da281e060216a758a8a
BLAKE2b-256 10908920dff4fa1a54e284057b521c7228a47752f7f34b7d8fa8f0f85df72d42

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c5883e072a1f0fb971c0943d7920119f65b80dcf6fa3c1ad1422461be16b0a9
MD5 c95c63d8e2d172c35642131123c770ed
BLAKE2b-256 95fb47da653817217c0509670ee28be632183a3e4ad8f639f5f285ed786d53ef

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d0c4eda012502353866519531b589507476d4ee966993d8137823c72797661b1
MD5 3ab56abb65b4407141a867290d08ba8f
BLAKE2b-256 40ef16ae28ae1c1972f83ff5f0e4c6fce7ac9686e58aa9694897ab8d37b96423

See more details on using hashes here.

File details

Details for the file vispy-0.15.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.15.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 26a2a126d2c7e9fc25a1cb4b8f24bdfeda2baa1af0075391f0bc7d468160b64a
MD5 5f5e8a6786825521897cda2e402a90c4
BLAKE2b-256 5c947e29d9cb3398b8b65f56c5317c70ab60ca00a5f51d0513c06a72c48fd20d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page