Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See CHANGELOG.md.

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Governance

The VisPy project maintainers make decisions about the project based on a simple consensus model. This is described in more detail on the governance page of the vispy website as well as the list of maintainers.

In addition to decisions about the VisPy project, there is also a steering committee for the overall VisPy organization. More information about this committee can also be found on the steering committee page of the vispy website, along with the organization’s charter and other related documents (linked in the charter).

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.12.0.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

vispy-0.12.0-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10Windows x86-64

vispy-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

vispy-0.12.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

vispy-0.12.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9Windows x86-64

vispy-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

vispy-0.12.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

vispy-0.12.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8Windows x86-64

vispy-0.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

vispy-0.12.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

vispy-0.12.0-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7mWindows x86-64

vispy-0.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

vispy-0.12.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file vispy-0.12.0.tar.gz.

File metadata

  • Download URL: vispy-0.12.0.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.0.tar.gz
Algorithm Hash digest
SHA256 0ad4a0fe902d3a1862b92eb2137a20cc5d2595c78c413175d92857222f46303d
MD5 2fb09e9f56e8d0b493d068837b6f991c
BLAKE2b-256 106b91567b5ec340a440d597e363928cf614d86a772acf9eb6406ed61f8cb870

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bb786d7614e1665272b042c970e3d2f17db8f2eb5c1360d151b5cb3bf7fd05f3
MD5 df4d9dcacf71155cba9e42e810bc49c2
BLAKE2b-256 f5c6575a3be2381329dc80f2d461ab1a32fd4562995aba4861ad96ad3bfc194f

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0574725df7249b8922a8401fe6167d83b7112b4c668cb17ff5bc4146db233a6
MD5 531d6f41f4d80d520b11aa0555c20110
BLAKE2b-256 64aa60a283db6814a7c013e074dbe72359463bbb366269245bc9e6aa2a1881f1

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f8b7d16d25f6c03b5be619f92b9fb98a3ce6b11abf1ef8737ada17fe98891ba3
MD5 1a86961f5cb01e90fea0e2bc87ff6702
BLAKE2b-256 17f705185cc27ed33e9277a3df20d72fa2a5df3ed31746cb7e6f7852d5327867

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1028ed397d20912e7e59833d69d718968d4804db559652014889eabbfff34dfe
MD5 1b16e052867e2fbad5a5d4309a94776c
BLAKE2b-256 55d58b2f56b4b7bfdc13e80c7b58da85589b8a259a5fbb9a85fd7efc4d60a0b9

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1f030201fdd2799776b0d11524181f8eec3cc292ac816ded70d86002db902dbe
MD5 b0d5154b0cb68c91a416eeefff60ea9b
BLAKE2b-256 30171bca47eb50527f6a386421a625dd73a701d53f4ba3f5021e544b7602813b

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eae90e918f3bf3eecb6ec9e9f0b44972a12ea1b02bf60b402ef1941af696aa94
MD5 f449ef5bdfc28c36dbc201957d4b15eb
BLAKE2b-256 6c8331a7cb0d6de53147bf9517a87da0a3b2c874415b369c78332cfbfa4c7b56

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87135788cbd582556748fb9bf4eb1ebe053c480a9aa8cf0501b8576fc495abc7
MD5 62f7e373c1c765daccbaa5d9540d444a
BLAKE2b-256 8d4b51d95abe945da18ac9a6487c76949d2ca734ea2667bfffc7d08c9ee90a45

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6edd4b399440e87c69d8386036a0ecd4cea3658de2593f10f95fbb231236d44f
MD5 35e8b71356f509d42c170014ce5a3ad1
BLAKE2b-256 11a6d60e16b0e76b5a2f4e6aa3bc8b95ce59007275f4d9221342b0e2343779f8

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3a366861a454a9db604ceb2e4e8ce53ed3d07270429aee0a5fe7ab884558ef2a
MD5 3db0389a74463d163577a4a3a3e38f88
BLAKE2b-256 09988b07c2bacdb01229bf324840936c06188863e7dce923df1c16ebe7cc9e3b

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4598b324f3e8db751d1c81717d5106ef63db4b09a277a782cefaf1f0b04139e6
MD5 9bbd01c9d089067c20a428c6c1ca8af4
BLAKE2b-256 c81368ed558e6644d6bac1f84045098c2ccb975e332ebd3902ceba5583c1c467

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2463d571e1a3ea1bad1f53c920db85761f78b5f3b3ad2360c97aaf532772878
MD5 5e0584d1e5a964cd1f88f42677570ce4
BLAKE2b-256 c10b4c2e36f388c72baa47a71248f4e2fb0e1038f3b4b4e53ff66f17f0525370

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cda457b41e1329c5857ba6737f9e8792fed0036183bce0d90edc32bc3837f2cc
MD5 abe9a453112cf63b0b03c82f502be04f
BLAKE2b-256 e054a0b801544d8779e18331ac67dadf537879c69604035441b0cbf82263247b

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8b86c767d31da68675f723f779d15bcd27a9376f7a32a5e44a5eb29a9ba5a3db
MD5 269a8101a65d4eb06c85ac70a98d83d0
BLAKE2b-256 6dcb16e8b9e28fc44d556a06f066a83932a24c9478bd5107154ba78fa322fcb0

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 abd9cc20e5be07fc543bd7c08cfa4ebe17f4dfa32268830830f1d30d9a748674
MD5 ab0a1562b55b8cc7060f267e98467810
BLAKE2b-256 7451e3f1fe0ab4493cd530c1861c87ec87d273cfce52e31f072f350b7ce836fe

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b7e160fd9275c6a6cd272b2e9cc4db320fa049584aeae31b44506a784297c1e
MD5 f66e4e3f987159f776ff8deaf32acb5d
BLAKE2b-256 132d6046b43919253fcecd705ad6f64987e5750e3f4fe705e53516df13fcf9bd

See more details on using hashes here.

File details

Details for the file vispy-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4adc522c910d89d094ff8ab09726d09e34dab914b8d771d27830e855cf2e9908
MD5 ca94bb189d656410a7e9b77b8b9a307f
BLAKE2b-256 ecdea5fa406b8d9eb7136427ca660800b1425e0f32e7849c7180fb213caf194d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page