Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See CHANGELOG.md.

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Governance

The VisPy project maintainers make decisions about the project based on a simple consensus model. This is described in more detail on the governance page of the vispy website as well as the list of maintainers.

In addition to decisions about the VisPy project, there is also a steering committee for the overall VisPy organization. More information about this committee can also be found on the steering committee page of the vispy website, along with the organization’s charter and other related documents (linked in the charter).

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.12.1.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

vispy-0.12.1-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10Windows x86-64

vispy-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

vispy-0.12.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.12.1-cp310-cp310-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

vispy-0.12.1-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9Windows x86-64

vispy-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

vispy-0.12.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.12.1-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

vispy-0.12.1-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8Windows x86-64

vispy-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

vispy-0.12.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.12.1-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

vispy-0.12.1-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7mWindows x86-64

vispy-0.12.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

vispy-0.12.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.12.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file vispy-0.12.1.tar.gz.

File metadata

  • Download URL: vispy-0.12.1.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.1.tar.gz
Algorithm Hash digest
SHA256 e00881c1d0f9b2c08eb6e26e9361adbde8a3a96e7878ee6c1e199e7c5872224f
MD5 f57417fe4c27f289915a8901c49b50eb
BLAKE2b-256 df2ae783d6545456d451b380b95a3ed2cb737cdb4b2851136b6f7aaf6daceea8

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dfaf32cc05dca7e36bf40350c28ec69ddb83977510c5cb64681ffe199071b0bb
MD5 79acecce829ad33520f38b7c814a98b2
BLAKE2b-256 b6dd43b329a9b7007a91a4c69cdf72ee77dcc9d2cd82325244896264216832f9

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 77c790902b3d268f188c88c75b4a8e54d744634bf13e0673ced54d84f416de12
MD5 495decfe2d1bf7b13dacf7d612d53d67
BLAKE2b-256 80fea3435b22202737a6ddb97eb635864c366aeb2d16b62c0618aacecba713ed

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6eae286e966b78ba9b75ec8eba9c21603997145e24b4260f52943fd155f7731
MD5 f38b318d8328f72d82898a7a0a6f01f3
BLAKE2b-256 668a65b0349afb2e4e80f3678dc56d3dc83c1cc9cf25195a2193c720dea3e75b

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e33567d6bb0d12db82d08d164cca9c583b515de487434ac2056c73902e95d09
MD5 b96e861622a3b1ce678375270a248f53
BLAKE2b-256 9911a55e6ca38a123d37c634c874614a7a390cbed1ab7a48e08b4abcf65eaa89

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c621f52c350e7e617324d7eb3bb44e9fc7d4991416b90f53793dbeb9e68e309c
MD5 813c8219a73b3d2be4b4bd70abb1d8d2
BLAKE2b-256 e657f8c109d8ca38ca82ae59ad7eaef99a498d2da2fe76029c269a5de33f2c2f

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 936afd0221b23c4bdbeb04a35c49c22afe4f2fa746640a55e96af966f5b304be
MD5 878b7e7ebf398341a1e3a3ad019f8066
BLAKE2b-256 b55b524cf5513a904873500a77d1cad2e7fb2cb7beea378ee3a028f0379d72e6

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 559f3c7ac96f31e4eca85d2b7c76b33c86750c1c28474e1352836b3ea7a3ed0e
MD5 a45af0805a9e1af0476cd3fb59b3ffc1
BLAKE2b-256 2bd72a27e6944a7a608ba80212db0fdd57488971a098e5bab63bb52b6aadb3d0

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19642e5921eb98512ea551b094db6611d782adff43b1b8e50eb2ff2a64327b02
MD5 2444656a283b07a1b6672545912b06c7
BLAKE2b-256 5220119a815b3746f0a140e13b91e7ad30741a76a9e48b64164a4f9f30f5d6f2

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6d246436e1f96dbe52f1d0faa55d1efdd200c39d87b3e91177fe9fceb12eaf02
MD5 2ec333e181350e5f2a7d04a392df5227
BLAKE2b-256 584d64aefa7aae8e5ed8cd13add4541cab38fce98e797c0e8a3fe7cfe1842f0c

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47015195c9f1a737147547a355b7523ea106ebe5135e6fc2008b4e7cb2ee6bc8
MD5 479b3ad6423654847ff067103c1da035
BLAKE2b-256 07599a979e814c89a4e290ff62b3965eca16c66aae6c891195a976c577bd9126

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f31e5c8ca89b434839af94313f1322e2aa04772f8c1ba44142cccdb19d753e17
MD5 807afae9a9c734f3d20434caa7121a02
BLAKE2b-256 6c3c1bdd257038d31c4e4be420b207c04690475e1f881f1ec7fdef0d0aa53bac

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f820519ecf6eea5085404464565b08b9634ff3d72c5edda61fec22c21313159
MD5 f46210033ef5ad93c3b9ef842982b4ec
BLAKE2b-256 5b81938889971380c1e4a52ff184f1359bee28e17a705400f1ae8420181b8d3d

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for vispy-0.12.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bb92ad351760f4b358530965d950bec7304056e39b1570148818263691f75eb0
MD5 e0f3741e6fea6f68c9bda2f733800a43
BLAKE2b-256 9918d74cabd9e1605459a35acd66e1f091a863b6ec977a33ea02247f0b35ce85

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e2a4f23870ae4587f7cf94f28d94a39649a3801376e22bd34276ddbfc6e13384
MD5 14766fd9b7e038bf6c01b905b9998ed8
BLAKE2b-256 d0fb6ec84be309682ef97e78cf5495d553b0005d47731b1995c78359cb95752a

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27655b8c2abe84d807b8d9643789c875fd7045d79ca8fa6424480563ca7aa76f
MD5 3b3f71473f4a5e691f06c14878729f84
BLAKE2b-256 13b8301975840693819d2cea10e49471a74ee2e2296fb670ae388fce424a3035

See more details on using hashes here.

File details

Details for the file vispy-0.12.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2dc1b24911a9c2b3b1b08d2583c6ced53e41bb8fd96ae41dceb61870e871673b
MD5 752bbf05dd62c3c27dc2138b7e8b7bbf
BLAKE2b-256 dd052d85f80f182d0db2634360e6ac153c56da6099f8ac00570bb60207d2dda2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page