Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See CHANGELOG.md.

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Governance

The VisPy project maintainers make decisions about the project based on a simple consensus model. This is described in more detail on the governance page of the vispy website as well as the list of maintainers.

In addition to decisions about the VisPy project, there is also a steering committee for the overall VisPy organization. More information about this committee can also be found on the steering committee page of the vispy website, along with the organization’s charter and other related documents (linked in the charter).

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.14.0.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

vispy-0.14.0-cp312-cp312-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.12Windows x86-64

vispy-0.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

vispy-0.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

vispy-0.14.0-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

vispy-0.14.0-cp312-cp312-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

vispy-0.14.0-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11Windows x86-64

vispy-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

vispy-0.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

vispy-0.14.0-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

vispy-0.14.0-cp311-cp311-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

vispy-0.14.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10Windows x86-64

vispy-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

vispy-0.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

vispy-0.14.0-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

vispy-0.14.0-cp310-cp310-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

vispy-0.14.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9Windows x86-64

vispy-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

vispy-0.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

vispy-0.14.0-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

vispy-0.14.0-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

vispy-0.14.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8Windows x86-64

vispy-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

vispy-0.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

vispy-0.14.0-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

vispy-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file vispy-0.14.0.tar.gz.

File metadata

  • Download URL: vispy-0.14.0.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for vispy-0.14.0.tar.gz
Algorithm Hash digest
SHA256 def727e76f2b65ded88664a83da50dda97963961c16f13a4d850abdd45930f94
MD5 538ea36d893c2338cb7f3515c97ff4a0
BLAKE2b-256 aa9ba55abb221b22ec495d8fb378c65abb418f1f7af073d90fa0653c16108ecb

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for vispy-0.14.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b40f83a422c25ea3c22495f8aa2220e5e08ba11bc28cca0a61e1cb1c7071bfac
MD5 962fdda5e67be9aafe0a7e467fba969a
BLAKE2b-256 19d5ec71c2dd3ba01c0892dd0e6d54ec814eda8bde0e4e95086d90c7f60f8f38

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a749481c6d1ab509c093264d5a7e398948428aa7c16e7c1b091e5a0de8911302
MD5 c20c6b6831580fd66a062f68c7c44efb
BLAKE2b-256 636df3e71513a1c1d771b5d908843d9f58de6e3e04484ae4919a578c2ec190b7

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4cc4cc1a8ace1ea9e0d2a3221bd64529115714a80cf985dd585f89a8ba76d0b1
MD5 f02d2558bcc1f74a50c2786bc5643ca0
BLAKE2b-256 55955b50c0f506d035d2302c0e1d0594d807960344c536663758708b9e2e810a

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f34a5f8c613f986fe27c46fb91872d96fb7a71c5e9e3241b80df0511cafcbb67
MD5 d3478b965d1a47a72e8274bbdcf86a53
BLAKE2b-256 9309c06d2dc0514179aff98d025670cbd4a98483d50c89f2d51ca046844d604d

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 341ab42e6a194801220dd4abb139a040c510c7de9049955d5d5899b843ff599f
MD5 37347ddb0d47ca852ce3683383304db8
BLAKE2b-256 940e46b9689adc413f7c4d3055e93d06fdf79c22914761e5ee857a13ae0b294c

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for vispy-0.14.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1ea64b3d169d54c5e66d1ebb10b6834b0afbe12c60021fce221ecc3cb89526ef
MD5 97a38e2ed89255f5ca219605874bbeca
BLAKE2b-256 d5cc52887d9ed39264bc3930191a7625e6894ab3509d1f6a1c8a8699a85a375a

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 453141b6d7e905b814a465f937976f1b8823d12adc116c0b00661b241a6b228f
MD5 f24af35bba74631d305f4f20f904fbcb
BLAKE2b-256 9bbd19e0ab27c7541f19715519024609c08f31e33bba043bbeed4db0fff65d5d

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1e80cd6f182fe6e07fc03a1fbcbec161fa63182d2c80bf0ca29bfb88ab08b7b7
MD5 7be83b1855d2140fc2e1cc6eecaec672
BLAKE2b-256 d981f184c2e11ee1435b36c30f8ec1a771df0e84199244d60aa39c23906e34eb

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 246963ed79fd359eae22062fd12d62acde55918ef2ba846d254b21c387480a11
MD5 40f031f0f5aee8411b4307e3339b0be3
BLAKE2b-256 9efc759b16ed3a106843eb1f689dd0d200cf891defe7476515d6563fb07604b8

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a0f77585e03a1b8c8d2d86ea61f77c6d8fc3bb66e45b1727eebee7f5208454e
MD5 ca85dcb6529068e76fb1d8d7a5a7c804
BLAKE2b-256 7d022d50ed15e5968732ec6663ec958dcca3c6e93d87c191981ad414d32203e0

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for vispy-0.14.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 79853134d24ef8bf21a2e72bd1312a5302f5f02c43dd958368101e51ebbed4c8
MD5 05b5e7f4b4ffce4427ee9ccd3e92d6d7
BLAKE2b-256 845293d4c6bfa91fba1f1eaa6cd156611e3bed33122eee750748e859bf441b72

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 452e4d3e8859297d1e57a7fc153468f6f6a71ababaadbbbd187f581f546b83a9
MD5 6490c17d1a80cf441aebb3daa1c4b3af
BLAKE2b-256 6b2849e40d3ce999d5a9d9173c1e6a69c3b2a89ef6d9cef321984fe4362843aa

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e3f2b8dfcd21881ffb37177084fcbebd4cbe5ed7146fa678aca35169c6aaec21
MD5 49740ae5f70c9fc8ee37f6c19e7af9e2
BLAKE2b-256 febe346a27670fbc9594c912634afc39c58792a8f0699f74fc912ad763ff8ad2

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dae0cd8ec67ede53bc5714ceeb8c9a8d9d5463cdc2cf3252f13b6ee219bbca66
MD5 7f0923674f61bcc6cc52e8778ac481ef
BLAKE2b-256 9007ff0a1040954add2af0416525e2268beb94b7c45f26cf6e0ed69b8820d29e

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d7133ff712a5bdded99c5d1f90fb5c6c6fd666f90db063744af442e33ea909b2
MD5 de886a9da485281cdc2d9cd0b668a567
BLAKE2b-256 1cd50ac5f679b3e8b814c8c11f1588b8350ab5fd587a885cc2a6860b07b8bcdb

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for vispy-0.14.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f91e2b6ca163a4ec8e49accb74ab8a726ba170ca93b00669172ac155e2a7aafd
MD5 e8861f3208e4d18e1cb0da243052b604
BLAKE2b-256 03c50268ba7d4e4543408ebffab3ac702bca8dbba7e7a276af858cbdfeb187cb

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 460eb9535f94e26c49e97d31a9a7d066e049a7dea61c257c6f2adaf0b5dc6e51
MD5 0e3fe009c8098e801fb1fbe070cf005a
BLAKE2b-256 7f8ca59ece7bc44446f410f5e351dea231b8529528affb89ee5d1d2a35c6f42e

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 200440c40d546c557fb585deaa367c94df58ac8bf9b88e96dbadda844667756d
MD5 a90ee83d2ae4f073ef9a534abd6a8e41
BLAKE2b-256 a82e96f5764e0f987632db168ee895262206e1ac80d2e54ea92defbe5b478ad6

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d4fa49be67ac7b8fc5c97386d2743537c1b05b7888cf037ef1823b730c45bc76
MD5 d4da265a223d770dbfb2c997d74f654b
BLAKE2b-256 1de640f8143adab6b815861633edf9a2ee85371bf9a99d874b8f86c0fbc2f3fb

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b64404ffd5b41f3bdd18e1db03a401009ad7f3a9d1a638f34c2d23c0237ce4a
MD5 e1d6e58347d1615e4f5c5b72d684ef72
BLAKE2b-256 49d84968e85d3329b0968425619f95b425b2088455b4d6a2e70529cf5f5033c2

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for vispy-0.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1c8d980c0dce096fed4122e4bd2ade93bde8c95c0652499cc4c485c42bd82847
MD5 f0fe4872d1e9f2a144709dcc1b329aa9
BLAKE2b-256 5fbdadb27b412da1f108c38890eaefa364eb81eaa379dd8a464ffc5c3a3f5bbe

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f71fab5e8c319ed0c6d6296710f1bfdd6d4719cdf081600ab33920f18e5c5ccd
MD5 8ed1b41a57e989aaf66cf367d69d33d6
BLAKE2b-256 1be21192cb329ad91c92948c3a0bafd8e83aae75a0cce8d7aa6e4b491c519b25

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c55ca0ea365ea23dfde81aca9a9a4291c99814f8d554448f5865afbd8e44b6fd
MD5 cb19306dbe838702869ea5118cad6f8b
BLAKE2b-256 cccb5f14ba425fcd1f56e67be9aa3a442ff6e4b44733056a57b2ffed314a706f

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 44b9ce186bf951bd216a12218a73517e71b567c911e23f21a6ca3e1605edbab9
MD5 b96b71d4e066c3a6e8b75a967ce1bf09
BLAKE2b-256 758adda82803f295e771dab178d99d6a9a4336a2480113740dab1bc20180394a

See more details on using hashes here.

File details

Details for the file vispy-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e8aae9b0818ee3dc72adbb5de172f2ea6bcdb419251d101ba4d16d7d6d6f76c
MD5 5f7a342f80660dcf50916574539d67f5
BLAKE2b-256 a9a7522d5b8113ad8094a3b7fb7fdec6ed112e9482a92e70227bf8e38b299467

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page