Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See [CHANGELOG.md](./CHANGELOG.md).

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, IPython notebook with/without WebGL, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.7.2.tar.gz (13.4 MB view details)

Uploaded Source

Built Distributions

vispy-0.7.2-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9Windows x86-64

vispy-0.7.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.7.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

vispy-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

vispy-0.7.2-cp38-cp38-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8Windows x86-64

vispy-0.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.7.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

vispy-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

vispy-0.7.2-cp37-cp37m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7mWindows x86-64

vispy-0.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.7.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

vispy-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file vispy-0.7.2.tar.gz.

File metadata

  • Download URL: vispy-0.7.2.tar.gz
  • Upload date:
  • Size: 13.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.2.tar.gz
Algorithm Hash digest
SHA256 c60fe00ce09746b71baa76bfc6b8acd28d32433cef096026935c5d16837583d2
MD5 253c1509e99332ac9526fdcbf0e4e7e6
BLAKE2b-256 dc429d67ad1d176b1198bf09bee1ed46ca12b147f10a43f69e553778c84d4458

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3fb2329ad36debb5e25ea2c5ee7dde28fe31f69822487ceeea6449709322a9c8
MD5 6fb63ab147cb80219078805a8842c41c
BLAKE2b-256 1f783109ea4c78b210b1ae069d85876b2e16ad8f9119788ed5677fecb45cc859

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.7.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e12136557b5da5380491c504d862ac34daf81402f1fe514db2ccf0a94b94fa8d
MD5 a214974278e58f52243421e4a7e79b6e
BLAKE2b-256 422aec1c0645d499bc43d0fddb3177ea93003d04f372233d22290060dbff8344

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.7.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b88a991208489770a32b838683ae17a911e36870f8e81b37bf5c59c49550abed
MD5 fc3c29fffa957983bd72d8c1a49cf16c
BLAKE2b-256 799adf4a07ce3c27f9996fe1b12f3a51309e23f10affef79bd9fa1a118ce2384

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4384e2f830d919952d71b4d3555a28e585736a8e15e1c399628eb29f03a0e24d
MD5 a0df40a309dda6c1d852f468697304d9
BLAKE2b-256 afbd01150bbc93b1e67ad480608e295d79111d186faf7571f72f11aa452150e2

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.7.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 48f8bfc937df756d69c37dd036706e767d64f510a80626ed91d3298bada18a7e
MD5 9d0d84ca5eac6e6d71dd8c9d6688bb23
BLAKE2b-256 695d4044c8bd0dab64aa89185598d58567e496d0d24f09d8c3a3564087ff8170

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5c0b4205f1c71b148718a33682afda141d402957c514cf8e5f2b5ddbdf75c5c
MD5 d4d98f68c7687abd3096dd1136bc8c89
BLAKE2b-256 0df31be338980eae2131d8e5a629122d732d4dd7360dfe097306ed2cf859a30c

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.7.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 216efd890b8b34e694bbc927a7bb1c4b0963d19efcb7c98d81c89a11433d17f8
MD5 1a9d45abe400f2523caae582fcf4160e
BLAKE2b-256 9033226f70f9ecb8ae3c4eea330c55ccc9daea3698bba0d5f4f1214c85917120

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 42370f66d065f71fb23d69bd20a3f093eb3f50987e7568e4306accc3fb64de07
MD5 e4899a8f32aa5a7607276fd19d5e9c65
BLAKE2b-256 b43407cb19338083b2a8c79a69f33bf2e14b4bce95b1ea0f84f43c2ad33d0fe7

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.7.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c9b47316d26c65ec5a30dbf95ece35ea017b5ebfa1960a1481cb77d159a36239
MD5 3fb4c7089ccaa19ebe418c60a2fe8004
BLAKE2b-256 b2a7fea299e5159d551f7eb847b486353f6f02f77b8cbddbbd0543568a52fa80

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93adf217991fd99e6278a15970f4a0eebab69d8c1aa38839db1409ec642851ab
MD5 bbe6603a521fa467ef0ee593d4509802
BLAKE2b-256 29f04d4b187f54c56ba19f220f75c1cb091e5673954e1392b3c1c3fb2022addb

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.7.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f8a0bb0892b184a00851c182665d621a32f8a49bfe8e314d95cda146bd391a54
MD5 1495166197ace86e2f0fdaf1cce4b618
BLAKE2b-256 ce4e7c65a141a05217963181cc25bd7ab679139fe8d7c48cb5710653c68216cc

See more details on using hashes here.

File details

Details for the file vispy-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb93216a0ef311d4fe42c6fdfcf71fa4fb80a7ef5cb614ccfffece9670b081d5
MD5 f77271ebe97bacc7073cfa05ac5b92c8
BLAKE2b-256 8bfc7087e53a6b7c269b99a1f4ce1047beaed9503f460cf5ae7800dae2e230c6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page