Skip to main content

Vision Transformer (ViT) - Pytorch

Project description

Pytorch Implementation of ViT

Original Paper link: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(Alexey Dosovitskiy et al.)

Install

$ pip install vit-pytorch-implementation

#Usage:

import torch
from vit_pytorch import lilViT

v = lilViT(
                 img_size=224, 
                 in_channels=3,
                 patch_size=16, 
                 num_transformer_layers=12,
                 embedding_dim=768,
                 mlp_size=3072,
                 num_heads=12, 
                 attn_dropout=0,
                 mlp_dropout=0.1,
                 embedding_dropout=0.1,
                 num_classes=1000
)

img = torch.randn(1, 3, 224, 224)

preds = v(img) # (1, 1000)
preds.shape

Parameters

  • img_size: int.
    Image resolution. Default=224(224x224)
  • in_channels: int.
    Image channels. Default 3
  • patch_size: int.
    Size of patches. image_size must be divisible by patch_size.
    The number of patches is: n = (image_size // patch_size) ** 2 and n must be greater than 16. Default 16
  • num_transformer_layers: int.
    Depth(number of transformer blocks). Default 12
  • embedding_dim: int.
    Embedding dimension. Default 768
  • mlp_size: int.
    MLP size. Default 3072
  • num_heads: int.
    Number of heads in Multi-head Attention layer. Default 12
  • attn_dropout: float.
    Dropout for attention projection. Default 0
  • mlp_dropout: float
    Dropout for dense/MLP layers. Default 0.1
  • embedding_dropout: float.
    Dropout for patch and position embeddings.Default 0.1
  • num_classes: int.
    Number of classes to classify. Default 1000

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vit-pytorch-implementation-1.0.2.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file vit-pytorch-implementation-1.0.2.tar.gz.

File metadata

File hashes

Hashes for vit-pytorch-implementation-1.0.2.tar.gz
Algorithm Hash digest
SHA256 60cd8447dec9f445cadd634efc7bcdc0aedc40cee77784f4e2da8275c920cddd
MD5 b03a20aa63edbe07232c7cd77dc5e05b
BLAKE2b-256 cbf290f9ce6d7371f7fad08a6b5195998685dbb69c386fe0f235212a7eb49cbe

See more details on using hashes here.

File details

Details for the file vit_pytorch_implementation-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for vit_pytorch_implementation-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6a2c3ba6101229fbd19e4ca7d0b0de308a5d0b8cf89c6cfad6bdf4af662a82d8
MD5 effe1b95176a18783642ef741492133f
BLAKE2b-256 22c6ed1e04c5230d8f04afc66828e4aec0bcd0d29b9a4486b538a863dc29253a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page