This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (
Help us improve Python packaging - Donate today!

vlib core libraries

Project Description
Python Application Development - Core Library Classes

Developed over a period of time to address reoccurring requirements for most all applications. It provides the following modules:

See Pydocs:

## Modules

* Configuration File Support

* Database Support

* DataTable Support (an ORM Lite)

* Logging Support (with email Support)

* Object-like (dot) syntax for Dictionaries

* Utilities

## Details

### Configuration Module

The configuration module reads yaml files and provides a dot syntax for expressing nested data trees. ie. self.conf.database.hostname.


# To create a singleton instance of configuration data
# found in a yaml file pointed to by an environment
# variable called VCONF
# eq.:
# $ export VCONF=$HOME/proj/conf/dev.yml

from vlib import conf
myconf = conf.getInstance()

# Print configuration data, from a Yaml file that looks
# like this:
# crew:
# captian: Kirk
# science_officer: Spock

print myconf.crew.captian

# Real world example with Objects

from vlib import conf
class Foo(object):
def __init__(self):
self.conf = conf.getInstance()
self.webserver = self.conf.webserver
self.dbname =
### Database Module

The database modules provides a simple set of methods for talking to your database, like query(), startTransaction(), commit(), etc.


# To setup the Db instance, you need to define the following
# in your config file pointed to by the VCONF environement var.
# The db module uses the conf module to read this information
# database:
# engine: mysql
# host: localhost
# db: vlibtests
# user: vlibtests
# passwd: bogangles

from vlib import db
mydb = db.getInstance()

for row in mydb.query('select * from product_types'):
print row['product_type_id']
print row['name']

# Without using config
# --------------------

from vlib import Db
mydb = Db({'engine':'mysql',
'dictcursor':True })

# Real world example with Objects
# -------------------------------

from vlib import db

class Books(object):

def __init__(self):
self.db = db.getInstance()

def getBook(self, book_id):
sql = 'select * from books where book_id = %s' % book_id
results = self.db.query(sql)
if results:
return results[0]
return []

# Connecting to multiple databases
# --------------------------------

# Define additional database connections in the config
# ro_database:
# engine: mysql
# host: localhost
# db: vlibtests
# user: vlibtests_ro
# passwd: bogangles

# __ ro/ __
from vlib import conf
from vlib.db import singletonFactory

def getInstance():
conf_ = conf.getInstance()
return singletonFactory.create(**conf_.ro_database)

# __ __
import ro.db as rodb
my_rodb = rodb.getInstance()
print my_rodb.query('select * from customers')

### DataTable Module

The DataTable module provides a simple abstraction for creating and executing SQL Statements. It relies on the Database Module for connection.


from vlib import db
from vlib.datatable import DataTable

mydb = db.getInstance()

books = DataTable(mydb, 'books')
books.setColumns(['book_id as book_id', 'title'])
books.setFilters("created > '2015-05-01'");
for book in books.getTable():
print book

Usage as a base class:

from vlib import db
from vlib.datatable import DataTable

class Books(DataTable):

def __init__(self):
sellf.db = db.getInstance()
DataTable.__init__(self, self.db, 'books')

def report(self):
'count(*) as books'])
self.setFilters('created > "2000-01-01"')
return self.getTable()

See, Also:
[DataTable Pydocs](

### Logging Module

The logging module uses log4r to produce consistent log entries that include date, hostname, and class name.


# To setup a Logging instance, you define the following in your
# config file. The logging module uses the conf module to read it.
# logging:
# filename: /var/log/myapp/myapp.log
# level: DEBUG

# If you want the logger to email you on 'critical' you need
# define email server
# email:
# server :
# username:
# password: secret
# fromaddr: Myapp Admin

from vlib import logger

class MyClass:

def __init__(self):
self.logger = logger.getLogger(self.__class__.__name__)

def do_something(self):
self.logger.debug('Started doing something')'Did Something')
self.logger.error('Did not do something')

# The following we send email:
# self.logger.critical('Something bad happened')


The above outputs to the log:

2014-02-24 14:41:30 dev1.localdomain DEBUG MyClass Started MyClass.do_something()
2014-02-24 14:41:30 dev1.localdomain INFO MyClass Did Something
2014-02-24 14:41:30 dev1.localdomain WARNING MyClass Warning
2014-02-24 14:41:30 dev1.localdomain ERROR MyClass Did not do something

### Object Dictionary

The **odict** class is syntactic sugar for dealing with dictionaries and nested dictionaries. It privides dot (.) sytax, as well as flower brace ({}) and squre braces ([]) syntax

attr['color'] = 'blue' # normal dict

attr.color = 'blue' # odict

Example 1: This code using dicts …

picture = {'name' : 'The Card Players',
'filename': 'cezanne2.jpg',
'year' : 1895}
print img(src=picture['filename'])

Can be written like this:

from vlib.odict import odict
picture = odict(name = 'The Card Players',
filename = 'cezanne2.jpg',
year = 1895)
print img(src=picture.filename)

Nested Odicts Example:

from vlib.odict import odict
workflow = odict(processes=odict(max_processes=5, debug=False))
for p in workflow.processes.max_processes:

### Utilities

Return X formated nicely for the console

str2datetime(s, format="%Y-%m-%d %H:%M:%S"):
Convert str in the form of "2010-11-11 17:39:52" or
"2010-11-11" to a
datetime.datetime Object

Convert str in the form of "2010-11-11" to a Object

format_datetime(d, with_seconds=False, format=None):
Given a datetime object
Return formated String as follows:

Format: None : 11/22/2013 01:46[:00] am
ISO8601: 2013-11-21T01:46:00-05:00 (EST)

Given a datetime object
Return a string in the form of "mm/dd/yyyy"

Give a LIST or TUPLE
Return: A CSV table as STRING or the input data if not LIST or TUPLE

Given a Table of data as a LIST of LISTs
Return in CSV format as a STR

formatdict(d, width=console_width(), indent=0, keylen=0, color=False):
Recursively format contents of dictionaries in sorted tabular order.
Optionally a certain width, indented, and/or a specific key length.

>>> utils.formatdict(batch_item)
active: 1
batch_id: 3250
on_press: None
order_id: 2007372
page_list: None
qty: 2
removed_date: None

Return system time to the millisec as set of numbers

shift the firt element off of an array and return it

Given an email address
Return whether it is in valid format as BOOLEAN

## Installation


Update apt-get to the latest libraries:

apt-get update

Install pip, if you haven't done so already:

apt-get install python-pip
pip install -U pip

Install Mysql DB Connectorm, if you haven't done so already:

apt-get install python-dev libmysqlclient-dev
pip install MySQL-python

Install vweb:

pip install vlib

__Red Hat__

yum install MySQL-python
Release History

Release History

This version
History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
vlib-1.2.3.tar.gz (26.0 kB) Copy SHA256 Checksum SHA256 Source May 2, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting