Variational Mode Decomposition (VMD) algorithm
Project description
Variational mode decomposition Python Package
Function for calculating Variational Mode Decomposition (Dragomiretskiy and Zosso, 2014) of a signal
Original VMD paper:
Dragomiretskiy, K. and Zosso, D. (2014) ‘Variational Mode Decomposition’,
IEEE Transactions on Signal Processing, 62(3), pp. 531–544. doi: 10.1109/TSP.2013.2288675.
original MATLAB code: https://www.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition
Installation
- Dowload the project from https://github.com/vrcarva/vmdpy, then run "python setup.py install" from the project folder
OR
- pip install vmdpy
Citation and Contact
If you find this package useful, we kindly ask you to cite it in your work.
Vinicius Carvalho (2019-), Variational Mode Decomposition in Python
A paper will soon be submitted and linked here.
contact: vrcarva@ufmg.br
VinÃcius Rezende Carvalho
Programa de Pós-Graduação em Engenharia Elétrica – Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
Núcleo de Neurociências - Universidade Federal de Minas Gerais
Example script
#%% Simple example
import numpy as np
import matplotlib.pyplot as plt
from vmdpy import VMD
#. Time Domain 0 to T
T = 1000
fs = 1/T
t = np.arange(1,T+1)/T
freqs = 2*np.pi*(t-0.5-fs)/(fs)
#. center frequencies of components
f_1 = 2
f_2 = 24
f_3 = 288
#. modes
v_1 = (np.cos(2*np.pi*f_1*t))
v_2 = 1/4*(np.cos(2*np.pi*f_2*t))
v_3 = 1/16*(np.cos(2*np.pi*f_3*t))
f = v_1 + v_2 + v_3 + 0.1*np.random.randn(v_1.size)
#. some sample parameters for VMD
alpha = 2000 # moderate bandwidth constraint
tau = 0. # noise-tolerance (no strict fidelity enforcement)
K = 3 # 3 modes
DC = 0 # no DC part imposed
init = 1 # initialize omegas uniformly
tol = 1e-7
#. Run actual VMD code
u, u_hat, omega = VMD(f, alpha, tau, K, DC, init, tol)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file vmdpy-0.1.tar.gz
.
File metadata
- Download URL: vmdpy-0.1.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 169872d9f3e015e6a83a4382b77e08d6a7ea7b6c4c1c3f37ead74df45e74d5be |
|
MD5 | de0348f2192aad11e976ef2f216e2cb1 |
|
BLAKE2b-256 | a97fbe8f311ca9e6a42aecdf19de2a9674161fe92faef52c8585a47c50a83634 |
File details
Details for the file vmdpy-0.1-py3-none-any.whl
.
File metadata
- Download URL: vmdpy-0.1-py3-none-any.whl
- Upload date:
- Size: 5.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b76e5eba708125cbe35a4e6214cb6a1ae22b028226b4e0a4386fe789b3ced387 |
|
MD5 | 99f7ab8f421dd02d68d5803c7108a22a |
|
BLAKE2b-256 | a9b06600bb338973539da8f74490be3dfdd88f0a9ec85fbd651396f9279679cc |