Skip to main content

NLP Tools for Turkish Language.

Project description

VNLP: Turkish NLP Tools

State of the art, lightweight NLP tools for Turkish language. Developed by VNGRS. https://vngrs.com/

Functionality:

  • Sentence Splitter
  • Normalizer
    • Spelling/Typo correction
    • Convert numbers to word form
    • Deasciification
  • Stopword Remover:
    • Static
    • Dynamic
  • Stemmer: Morphological Analyzer & Disambiguator
  • Named Entity Recognizer (NER)
  • Dependency Parser
  • Part of Speech (POS) Tagger
  • Sentiment Analyzer
  • Turkish Word Embeddings
    • FastText
    • Word2Vec
  • Text Summarization: In development progress...

Installation

pip install vngrs-nlp
conda install vngrs-nlp

Documentation:

  • Detailed documentation about usage, classes, functions, datasets and evaluation metrics are available at Documentation.

Usage Example:

Dependency Parser

from vnlp import DependencyParser
dep_parser = DependencyParser()
dep_parser.predict("Onun için yol arkadaşlarımızı titizlikle seçer, kendilerini iyice sınarız.")
[(1, 'Onun', 5, 'obl'),
(2, 'için', 1, 'case'),
(3, 'yol', 1, 'nmod'),
(4, 'arkadaşlarımızı', 5, 'obj'),
(5, 'titizlikle', 6, 'obl'),
(6, 'seçer', 7, 'acl'),
(7, ',', 10, 'punct'),
(8, 'kendilerini', 10, 'obj'),
(9, 'iyice', 8, 'advmod'),
(10, 'sınarız', 0, 'root'),
(11, '.', 10, 'punct')]
# Spacy's submodule Displacy can be used to visualize DependencyParser result.
import spacy
from vnlp import DependencyParser
dependency_parser = DependencyParser()
result = dependency_parser.predict("Oğuz'un kırmızı bir Astra'sı vardı.", displacy_format = True)
spacy.displacy.render(result, style="dep", manual = True)

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vngrs-nlp-0.1.2.tar.gz (32.6 MB view details)

Uploaded Source

Built Distribution

vngrs_nlp-0.1.2-py3-none-any.whl (32.7 MB view details)

Uploaded Python 3

File details

Details for the file vngrs-nlp-0.1.2.tar.gz.

File metadata

  • Download URL: vngrs-nlp-0.1.2.tar.gz
  • Upload date:
  • Size: 32.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for vngrs-nlp-0.1.2.tar.gz
Algorithm Hash digest
SHA256 d7dab1a2cc3c4c897003afdef66ec81b6b3de0f9d8b6f73a7c2e90cabd3e64ef
MD5 936dd70eb499cfd51e3f0cac8eef42a3
BLAKE2b-256 44a0d6629dff1fb99c11f002ee511c63c5890393e6375a7631d6d06c3a4c8695

See more details on using hashes here.

Provenance

File details

Details for the file vngrs_nlp-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: vngrs_nlp-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 32.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for vngrs_nlp-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 86fc907ee754a1d23433d35917ce30e8cf276133c07e301787b68bf0c5401e71
MD5 b232a2ba10ed925cd8d691c52657796e
BLAKE2b-256 cd31a173f4bc03c1e58a623d5ec5f075a079909c888f62662faaac2c77717c45

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page