Skip to main content

Encoder-Decoder base for Vietnamese handwriting recognition

Project description

Vietnamese Handwriting Text Recognition (aka vnhtr package)

This project deploys and improves two foundational models within TrOCR and VietOCR.

Proposal Architecture

VGG Transformer with Rethinking Head

VGG Transformer with Rethinking Head

TrOCR with Rethinking Head

TrOCR with Rethinking Head

Usage

vnhtr package

pip install vnhtr
from PIL import Image
from vnhtr.vnhtr_script.tools import *

vta_predictor = VGGTransformer("cuda:0")
tra_predictor = TrOCR("cuda:0")

vta_predictor.predict([Image.open("/content/out_sample_2.jpg")])
tra_predictor.predict([Image.open("/content/out_sample_2.jpg")])

Fully implemented

git clone https://github.com/nguyenhoanganh2002/vnhtr
cd ./vnhtr/vnhtr/source
pip install -r requirements.txt
  • Pretrain/Fintune VGG Transformer/TrOCR (pretraining on a large dataset and then finetuning on a wild dataset)
python VGGTransformer/train.py
python VisionEncoderDecoder/train.py
  • Pretrain VGG Transformer/TrOCR with Rethinking Head (large dataset)
python VGGTransformer/adapter_trainer.py
python VisionEncoderDecoder/adapter_trainer.py
  • Finetune VGG Transformer with Rethinking Head (wild dataset)
python VGGTransformer/finetune.py
python VisionEncoderDecoder/finetune.py
  • Access the model without going through the training or finetuning phases.
from VGGTransformer.config import config as vggtransformer_cf
from VGGTransformer.models import VGGTransformer, AdapterVGGTransformer
from VisionEncoderDecoder.config import config as trocr_cf
from VisionEncoderDecoder.model import VNTrOCR, AdapterVNTrOCR

vt_base = VGGTransformer(vggtransformer_cf)
vt_adapter = AdapterVGGTransformer(vggtransformer_cf)
tr_base = VNTrOCR(trocr_cf)
tr_adapter = AdapterVNTrOCR(trocr_cf)

For access to the full dataset and pretrained weights, please contact: anh.nh204511@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vnhtr-0.1.1.tar.gz (32.9 kB view details)

Uploaded Source

Built Distribution

vnhtr-0.1.1-py3-none-any.whl (50.6 kB view details)

Uploaded Python 3

File details

Details for the file vnhtr-0.1.1.tar.gz.

File metadata

  • Download URL: vnhtr-0.1.1.tar.gz
  • Upload date:
  • Size: 32.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.7

File hashes

Hashes for vnhtr-0.1.1.tar.gz
Algorithm Hash digest
SHA256 b3bc040f7db123295524afd5eedf294bfd7cf562972786ad5597d30e0fa9f2d3
MD5 2da591835b477b58d2d2381a53259607
BLAKE2b-256 7e7efa6668ef83f2e7ead972c16863824927de08800729038d83c3e9bb60d2cc

See more details on using hashes here.

File details

Details for the file vnhtr-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: vnhtr-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 50.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.7

File hashes

Hashes for vnhtr-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bcfa6128025d62f682017522ce809ba762a24e615732016b53bc088cb535719c
MD5 1299698a267874238b382b365b6c29f9
BLAKE2b-256 3f5635c13251ee96e4b268a74b55ed6d7d9e14c17e928ede11dfdbf5060c7f82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page