Skip to main content

Encoder-Decoder base for Vietnamese handwriting recognition

Project description

Vietnamese Handwriting Text Recognition (aka vnhtr package)

This project deploys and improves two foundational models within TrOCR and VietOCR.

Proposal Architecture

VGG Transformer with Rethinking Head

VGG Transformer with Rethinking Head

TrOCR with Rethinking Head

TrOCR with Rethinking Head

Usage

vnhtr package

pip install vnhtr
from PIL import Image
from vnhtr.vnhtr_script.tools import *

vta_predictor = VGGTransformer("cuda:0")
tra_predictor = TrOCR("cuda:0")

vta_predictor.predict([Image.open("/content/out_sample_2.jpg")])
tra_predictor.predict([Image.open("/content/out_sample_2.jpg")])

Fully implemented

git clone https://github.com/nguyenhoanganh2002/vnhtr
cd ./vnhtr/vnhtr/source
pip install -r requirements.txt
  • Pretrain/Fintune VGG Transformer/TrOCR (pretraining on a large dataset and then finetuning on a wild dataset)
python VGGTransformer/train.py
python VisionEncoderDecoder/train.py
  • Pretrain VGG Transformer/TrOCR with Rethinking Head (large dataset)
python VGGTransformer/adapter_trainer.py
python VisionEncoderDecoder/adapter_trainer.py
  • Finetune VGG Transformer with Rethinking Head (wild dataset)
python VGGTransformer/finetune.py
python VisionEncoderDecoder/finetune.py
  • Access the model without going through the training or finetuning phases.
from VGGTransformer.config import config as vggtransformer_cf
from VGGTransformer.models import VGGTransformer, AdapterVGGTransformer
from VisionEncoderDecoder.config import config as trocr_cf
from VisionEncoderDecoder.model import VNTrOCR, AdapterVNTrOCR

vt_base = VGGTransformer(vggtransformer_cf)
vt_adapter = AdapterVGGTransformer(vggtransformer_cf)
tr_base = VNTrOCR(trocr_cf)
tr_adapter = AdapterVNTrOCR(trocr_cf)

For access to the full dataset and pretrained weights, please contact: anh.nh204511@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vnhtr-0.1.4.tar.gz (32.9 kB view details)

Uploaded Source

Built Distribution

vnhtr-0.1.4-py3-none-any.whl (50.6 kB view details)

Uploaded Python 3

File details

Details for the file vnhtr-0.1.4.tar.gz.

File metadata

  • Download URL: vnhtr-0.1.4.tar.gz
  • Upload date:
  • Size: 32.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.7

File hashes

Hashes for vnhtr-0.1.4.tar.gz
Algorithm Hash digest
SHA256 e9496e707069d8872aa74939101f96f145ae0ba0d6bce38735860e987e5a11ca
MD5 761280eda97e321595bd3eb865aad364
BLAKE2b-256 d0c634a3c9279c2027af654d03e731d85e61bd958921b324fd09f4309b4ee6ce

See more details on using hashes here.

File details

Details for the file vnhtr-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: vnhtr-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 50.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.7

File hashes

Hashes for vnhtr-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 6a2b58927d4548c1f503e6bc8d0a4486f7c46ab4e74c6816dc6300dd9fe1a3e5
MD5 4bc35785ddc8488c506204b3a1d9e7a7
BLAKE2b-256 0933056febfeb7898ab4ba3b516d7c05f33ba672a0bac9697c79de2563325846

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page