Skip to main content

Encoder-Decoder base for Vietnamese handwriting recognition

Project description

Vietnamese Handwriting Text Recognition (aka vnhtr package)

This project deploys and improves two foundational models within TrOCR and VietOCR.

Proposal Architecture

VGG Transformer with Rethinking Head

VGG Transformer with Rethinking Head

TrOCR with Rethinking Head

TrOCR with Rethinking Head

Usage

vnhtr package

pip install vnhtr
from PIL import Image
from vnhtr.vnhtr_script.tools import *

vta_predictor = VGGTransformer("cuda:0")
tra_predictor = TrOCR("cuda:0")

vta_predictor.predict([Image.open("/content/out_sample_2.jpg")])
tra_predictor.predict([Image.open("/content/out_sample_2.jpg")])

Fully implemented

git clone https://github.com/nguyenhoanganh2002/vnhtr
cd ./vnhtr/vnhtr/source
pip install -r requirements.txt
  • Pretrain/Fintune VGG Transformer/TrOCR (pretraining on a large dataset and then finetuning on a wild dataset)
python VGGTransformer/train.py
python VisionEncoderDecoder/train.py
  • Pretrain VGG Transformer/TrOCR with Rethinking Head (large dataset)
python VGGTransformer/adapter_trainer.py
python VisionEncoderDecoder/adapter_trainer.py
  • Finetune VGG Transformer with Rethinking Head (wild dataset)
python VGGTransformer/finetune.py
python VisionEncoderDecoder/finetune.py
  • Access the model without going through the training or finetuning phases.
from VGGTransformer.config import config as vggtransformer_cf
from VGGTransformer.models import VGGTransformer, AdapterVGGTransformer
from VisionEncoderDecoder.config import config as trocr_cf
from VisionEncoderDecoder.model import VNTrOCR, AdapterVNTrOCR

vt_base = VGGTransformer(vggtransformer_cf)
vt_adapter = AdapterVGGTransformer(vggtransformer_cf)
tr_base = VNTrOCR(trocr_cf)
tr_adapter = AdapterVNTrOCR(trocr_cf)

For access to the full dataset and pretrained weights, please contact: anh.nh204511@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vnhtr-0.1.6.tar.gz (32.9 kB view details)

Uploaded Source

Built Distribution

vnhtr-0.1.6-py3-none-any.whl (50.6 kB view details)

Uploaded Python 3

File details

Details for the file vnhtr-0.1.6.tar.gz.

File metadata

  • Download URL: vnhtr-0.1.6.tar.gz
  • Upload date:
  • Size: 32.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.7

File hashes

Hashes for vnhtr-0.1.6.tar.gz
Algorithm Hash digest
SHA256 9d81fdffb6759fe92b1ea236adf7f217eb91792af4169d1382c7c8e4b29f9606
MD5 76b9fb0ce359cf0c4c92acd0f3fda15d
BLAKE2b-256 3c017369b8f6c4c10e9c73e572d98371c975e151bb552468ec20d3090c128ecc

See more details on using hashes here.

File details

Details for the file vnhtr-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: vnhtr-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 50.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.7

File hashes

Hashes for vnhtr-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 85c6f7a6ae38997af3115cc48bef7947dc40c8d5722d28bf58b70767b6b7a872
MD5 f09a16fcea86f96a0393545d44fed7d9
BLAKE2b-256 356ed088e43c098747591c38e8456d25ec3a634635d7988f62f43fcfbd467695

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page