TTS gateway for VeighNa quant trading framework.
Project description
VeighNa框架的TTS仿真系统交易接口
说明
基于TTS的6.7.2接口封装开发,对接类CTP的仿真交易环境。
目前TTS支持的仿真交易包括:
- 期货
- 中金所
- 上期所
- 大商所
- 郑商所
- 广期所
- 能交所
- 股票
- 上交所
- 深交所
安装
安装环境推荐基于3.9.0版本以上的【VeighNa Studio】。
直接使用pip命令:
pip install vnpy_tts
或者下载源代码后,解压后在cmd中运行:
pip install .
使用源代码安装时需要进行C++编译,因此在执行上述命令之前请确保已经安装了【Visual Studio(Windows)】或者【GCC(Linux)】编译器。
使用
以脚本方式启动(script/run.py):
from vnpy.event import EventEngine
from vnpy.trader.engine import MainEngine
from vnpy.trader.ui import MainWindow, create_qapp
from vnpy_tts import TtsGateway
def main():
"""主入口函数"""
qapp = create_qapp()
event_engine = EventEngine()
main_engine = MainEngine(event_engine)
main_engine.add_gateway(TtsGateway)
main_window = MainWindow(main_engine, event_engine)
main_window.showMaximized()
qapp.exec()
if __name__ == "__main__":
main()
连接
模拟账号可通过https://github.com/krenx1983/openctp 获取。
连接信息如下:
{
"用户名": "xxxxxx",
"密码": "xxxxxx",
"经纪商代码": "",
"交易服务器": "121.36.146.182:20002",
"行情服务器": "121.36.146.182:20004",
"产品名称": "",
"授权编码": ""
}
7x24小时环境: 交易服务器 - 122.37.80.177:20002 行情服务器 - 122.37.80.177:20004
经纪商代码、产品名称、授权编码三项可以不填。
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
vnpy_tts-6.7.2.0.tar.gz
(2.1 MB
view details)
Built Distribution
File details
Details for the file vnpy_tts-6.7.2.0.tar.gz
.
File metadata
- Download URL: vnpy_tts-6.7.2.0.tar.gz
- Upload date:
- Size: 2.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 560a598289b36746eca1fd2218fa2e550023e2b49bc890148e0b295400e0e079 |
|
MD5 | 39187eee7cbbd72dd276aeb2a87ab2a4 |
|
BLAKE2b-256 | d3b834b3538b7edd1e1670461652205c342bd6a1ec6e17151aef89bde0c18250 |
File details
Details for the file vnpy_tts-6.7.2.0-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: vnpy_tts-6.7.2.0-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bcea0a3bd75c3ebf9e93aabfb3b2c5aa6e9e5b8e2baf16478085344b7b32da51 |
|
MD5 | 168135065471b4bd233905f3051fc7d3 |
|
BLAKE2b-256 | 73ed92cb3be5123fa6393bb79de9cd0a7a05c8f2deb93e1fb8411ef5d300b8c2 |