Skip to main content

A library for video frame prediction using PredRNN++, MIM, and Causal LSTM.

Project description

<title>Predicto</title>

Predicto

Predicto is a Python library for video frame prediction, featuring three state-of-the-art models: PredRNN++, MIM, and Causal LSTM. This library is designed to cater to both expert and non-expert users, providing an API for developers and a simple interface for non-experts.

<h2>Features</h2>
<ul>
    <li>Three video frame prediction models: PredRNN++, MIM, and Causal LSTM.</li>
    <li>Easy-to-use interface for training and testing models.</li>
    <li>Supports custom dataloaders or default to MovingMNIST dataset.</li>
    <li>Pre and post-processing for input and output in each model.</li>
</ul>

<h2>Installation</h2>
<pre><code>pip install predicto</code></pre>

<h2>Usage</h2>
<h3>Quick Start</h3>
<pre><code>from predicto import PredRNN, MIM, CausalLSTM, Predicto

Create a model object

model_object = MIM()

Initialize Predicto with the model object

model = Predicto(model_object)

Train the model

model.train(train_loader)

Test the model

model.test(test_loader)

<h3>Custom Dataloader</h3>
<pre><code>from predicto import PredRNN, MIM, CausalLSTM, Predicto

Define your custom dataloader

class CustomDataLoader: def init(self, ...): ...

def __iter__(self):
    ...

Create a model object

model_object = CausalLSTM()

Initialize Predicto with the model object and custom dataloader

model = Predicto(model_object, dataloader=CustomDataLoader())

Train the model

model.train(train_loader)

Test the model

model.test(test_loader)

<h2>Models</h2>
<ul>
    <li><strong>PredRNN++</strong>: A recurrent neural network model for video frame prediction.</li>
    <li><strong>MIM</strong>: Memory In Memory network for spatiotemporal predictive learning.</li>
    <li><strong>Causal LSTM</strong>: A causal LSTM model for video frame prediction.</li>
</ul>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vpredicto-0.1.0.tar.gz (2.0 kB view details)

Uploaded Source

Built Distribution

vpredicto-0.1.0-py3-none-any.whl (2.0 kB view details)

Uploaded Python 3

File details

Details for the file vpredicto-0.1.0.tar.gz.

File metadata

  • Download URL: vpredicto-0.1.0.tar.gz
  • Upload date:
  • Size: 2.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for vpredicto-0.1.0.tar.gz
Algorithm Hash digest
SHA256 b8172828bc9779579f85f7ade5bf5830a3b1f502b58f07e6217c2362953f5d75
MD5 0157018c07f5aed1acd3df889c6cccd3
BLAKE2b-256 956f27a24fd73e42f156d2b011c9a768a77c61cd6d5ecb0fa4b14348d2612573

See more details on using hashes here.

File details

Details for the file vpredicto-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: vpredicto-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 2.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for vpredicto-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1bd047e2dc33814d38fea0cb2cc8597baec761ed86189bc6b0aff5574faaabf2
MD5 a44490951af986439148776e32262fae
BLAKE2b-256 5e28c45ce7c9004a64c225497a32e187d744564cc9d753feaf1c1e515d6cdf8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page