PyTorch implementation of VQ-VAE
Project description
Pytorch VQVAE implementation
Example
from vqvae import VQVAE, sequential_encoder, sequential_decoder
from torch.optim import Adam
from functools import partial
input_channels = 3
output_channels = 3
embedding_length = 256
hidden_channels = 64
beta = 0.25
embedding_size = 512
opt = partial(Adam, lr=2e-4)
encoder = sequential_encoder(input_channels, embedding_size, hidden_channels) # Encoder from the paper
decoder = sequential_decoder(embedding_size, output_channels, hidden_channels) # Decoder from the paper
vqvae = VQVAE(encoder, decoder, opt, beta, embedding_length, embedding_size) # Pytorch-Lightning module,
# hence usable to train the model
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
vqvae-0.0.0.tar.gz
(11.6 kB
view details)
Built Distribution
vqvae-0.0.0-py3-none-any.whl
(1.6 kB
view details)
File details
Details for the file vqvae-0.0.0.tar.gz
.
File metadata
- Download URL: vqvae-0.0.0.tar.gz
- Upload date:
- Size: 11.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | df903a9d2e1403186b71fa492a9edb4b168350eaf432c3e551ad8b766f0b6b2f |
|
MD5 | b55613de175772e469559b5e24b81bce |
|
BLAKE2b-256 | bd38179d6ed51ee0cbc0ad8928ffa3c2dae40fb1d3651d9323f4f1bf415c3520 |
File details
Details for the file vqvae-0.0.0-py3-none-any.whl
.
File metadata
- Download URL: vqvae-0.0.0-py3-none-any.whl
- Upload date:
- Size: 1.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a2522ad0e0f284b7f083f9f91b8af447ef5586ec13d39dd9c6a042e6e43b528 |
|
MD5 | e8843a489976cba9370271625f954303 |
|
BLAKE2b-256 | 604528595da8050fad92b6dddbe502be0f876cf93ec31363d1b0b3247b783baa |