DPIR function for VapourSynth
Project description
DPIR
Plug-and-Play Image Restoration with Deep Denoiser Prior, based on https://github.com/cszn/DPIR.
Dependencies
- PyTorch 2.4.0.dev or later
- VapourSynth R66 or later
trt
requires additional Python packages:
- TensorRT 10.0.1
- Torch-TensorRT 2.4.0.dev
To install TensorRT, run pip install tensorrt==10.0.1 tensorrt-cu12_bindings==10.0.1 tensorrt-cu12_libs==10.0.1 --extra-index-url https://pypi.nvidia.com
To install Torch-TensorRT, Windows users can pip install the whl file on Releases. Linux users can run pip install --pre torch-tensorrt --index-url https://download.pytorch.org/whl/nightly/cu121
(requires PyTorch nightly build).
Installation
pip install -U vsdpir
python -m vsdpir
Usage
from vsdpir import dpir
ret = dpir(clip)
See __init__.py
for the description of the parameters.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file vsdpir-4.1.0-py3-none-any.whl
.
File metadata
- Download URL: vsdpir-4.1.0-py3-none-any.whl
- Upload date:
- Size: 13.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ae29587aef4f060a84421f514a978a93ebbd4874e801752178135679f5d921a3 |
|
MD5 | 4b3c30227de61032a399532bd0392f11 |
|
BLAKE2b-256 | c739a510c4a7a4554473b6b373c9be950938b27ad165cce2fd1e57e15fb23095 |