A simple implementation of the Volland-Stern electric field model.
Project description
vsmodel
A simple implementation of the Volland-Stern electric field model (Volland, 1973; Stern, 1975).
The electric field model here is only defined in the equatorial plane around the Earth, where any vertical component returns is filled with zeros.
There are two implementations of this model: one is based on that used by Zhao et al. 2017 which uses the Maynard and Chen 1975 relation between the Kp index and the convection electric field; the other uses the work of Goldstein et al 2005 which separates the convection electric field into two components.
Installation
Install using this Github repo:
git clone https://github.com/mattkjames7/vsmodel
cd vsmodel
then either using setup.py
:
python3 setup.py install --user
or by creating a wheel:
python3 setup.py bdist_wheel
pip3 install dist/vsmodel-x.x.x-py3-none-any.whl --user
where x.x.x
should be replaced with the current version number.
Alternatively, install using pip3
:
pip3 install vsmodel --user
Usage
There are two functions which can be used to calculate the model electric field, one using cylindrical coordinates and the other using the Cartesian Solar Magnetic (SM) coordinate system:
import vsmodel
##### The simple model using Maynard and Chen ####
#the Cartesian model
Ex,Ey,Ez = vsmodel.ModelCart(x,y,Kp)
#the cylindrical model
Er,Ep,Ez = vsmodel.ModelE(r,phi,Kp)
#### The Goldstein et al 2005 version ####
#the Cartesian model, either by providing solar wind speed (Vsw) and IMF Bz (Bz), or the equivalent E field (Esw)
Ex,Ey,Ez = vsmodel.ModelCart(x,y,Kp,Vsw=Vsw,Bz=Bz)
Ex,Ey,Ez = vsmodel.ModelCart(x,y,Kp,Esw=Esw)
#the cylindrical model
Er,Ep,Ez = vsmodel.ModelE(r,phi,Kp,Vsw=Vsw,Bz=Bz)
Er,Ep,Ez = vsmodel.ModelE(r,phi,Kp,Esw=Esw)
where Kp
is the Kp index; x
and y
are the Cartesian coordinates in the magnetic equatorial plane (in RE, where RE=6378 km); r
and phi
are the equatorial radial distance from the centre of the Earth (in RE) and the azimuthal angle (phi
=0.0 at noon, in radians). Both functions return the electric field in units of mV/m
Plotting the model
The function vsmodel.PlotModelEq
will plot the V-S model potential, electric field, a dipole magnetic field and the ExB velocity in the equatorial plane, e.g.:
import vsmodel
import matplotlib.pyplot as plt
#The simple model
plt.figure(figsize=(9,8))
ax0 = vsmodel.PlotModelEq('E',Kp=1.0,maps=[2,2,0,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax1 = vsmodel.PlotModelEq('E',Kp=5.0,maps=[2,2,1,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax2 = vsmodel.PlotModelEq('V',Kp=1.0,maps=[2,2,0,1],fig=plt,scale=[100.0,100000.0])
ax3 = vsmodel.PlotModelEq('V',Kp=5.0,maps=[2,2,1,1],fig=plt,scale=[100.0,100000.0])
ax0.set_title('$K_p=1$')
ax2.set_title('$K_p=1$')
ax3.set_title('$K_p=5$')
ax1.set_title('$K_p=5$')
plt.tight_layout()
#The Goldstein model
plt.figure(figsize=(9,8))
ax0 = vsmodel.PlotModelEq('E',Kp=1.0,Vsw=-400.0,Bz=-2.5,maps=[2,2,0,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax1 = vsmodel.PlotModelEq('E',Kp=5.0,Vsw=-400.0,Bz=-2.5,maps=[2,2,1,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax2 = vsmodel.PlotModelEq('V',Kp=1.0,Vsw=-400.0,Bz=-2.5,maps=[2,2,0,1],fig=plt,scale=[100.0,10000.0])
ax3 = vsmodel.PlotModelEq('V',Kp=5.0,Vsw=-400.0,Bz=-2.5,maps=[2,2,1,1],fig=plt,scale=[100.0,10000.0])
ax0.set_title('$K_p=1$; $E_{sw}=-1$ mV m$^{-1}$')
ax2.set_title('$K_p=1$; $E_{sw}=-1$ mV m$^{-1}$')
ax3.set_title('$K_p=5$; $E_{sw}=-1$ mV m$^{-1}$')
ax1.set_title('$K_p=5$; $E_{sw}=-1$ mV m$^{-1}$')
plt.tight_layout()
Which should produce this:
and
Alternatively, we can plot the model vectors as a field of arrows:
import vsmodel
import matplotlib.pyplot as plt
#The simple model
plt.figure(figsize=(9,8))
ax0 = vsmodel.PlotVectorEq('E',Kp=1.0,maps=[2,2,0,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax1 = vsmodel.PlotVectorEq('E',Kp=5.0,maps=[2,2,1,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax2 = vsmodel.PlotVectorEq('V',Kp=1.0,maps=[2,2,0,1],fig=plt,scale=[100.0,100000.0])
ax3 = vsmodel.PlotVectorEq('V',Kp=5.0,maps=[2,2,1,1],fig=plt,scale=[100.0,100000.0])
plt.tight_layout()
#The Goldstein model
plt.figure(figsize=(9,8))
ax0 = vsmodel.PlotVectorEq('E',Kp=1.0,Vsw=-400.0,Bz=-2.5,maps=[2,2,0,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax1 = vsmodel.PlotVectorEq('E',Kp=5.0,Vsw=-400.0,Bz=-2.5,maps=[2,2,1,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax2 = vsmodel.PlotVectorEq('V',Kp=1.0,Vsw=-400.0,Bz=-2.5,maps=[2,2,0,1],fig=plt,scale=[100.0,100000.0])
ax3 = vsmodel.PlotVectorEq('V',Kp=5.0,Vsw=-400.0,Bz=-2.5,maps=[2,2,1,1],fig=plt,scale=[100.0,100000.0])
plt.tight_layout()
which produces:
and
Notes on the coordinate systems
SM
The Solar Magnetic (SM) coordinate system is defined such that the z-axis is aligned with the Earth's magnetic dipole; the x-axis lies in the plane which contains both the Earth-Sun line and the dipole axis (the x-axis points close-ish towards the Sun); the y-axis completes the right-handed set and points approximately in the opposite direction to that of the Earth's orbital motion around the Sun.
As this model is defined only in the equatorial plane, there is no input for the z coordinate; also there is not a z component to the model so Ez
is filled with zeros.
Cylindrical
The cylindrical coordinates used are defined such that r
is the radial distance from the z-axis and phi
is the azimuthal angle. z
is not used as an input because the model is confined to the equatorial plane. The outputs Er
, Ep
and Ez
correspond to the radial, azimuthal and vertical (z) components of the model electric field. As with the Cartesian version of the model, there is no vertical component to the electric field model, so the Ez
component is filled with zeros.
Derivation
The derivation of the model equations can be found here - if there any mistakes, please file a bug report, thanks!
References
Goldstein, J., Burch, J. L., and Sandel, B. R. (2005), Magnetospheric model of subauroral polarization stream, J. Geophys. Res., 110, A09222, doi:10.1029/2005JA011135.
Maynard, N. C., and Chen, A. J. (1975), Isolated cold plasma regions: Observations and their relation to possible production mechanisms, J. Geophys. Res., 80( 7), 1009– 1013, doi:10.1029/JA080i007p01009.
Stern, D. P. (1975), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80( 4), 595– 599, doi:10.1029/JA080i004p00595.
Volland, H. (1973), A semiempirical model of large‐scale magnetospheric electric fields, J. Geophys. Res., 78( 1), 171– 180, doi:10.1029/JA078i001p00171.
Zhao, H., Baker, D. N., Califf, S., Li, X., Jaynes, A. N., Leonard, T., … Spence, H. E. (2017). Van Allen probes measurements of energetic particle deep penetration into the low L region (L < 4) during the storm on 8 April 2016. Journal of Geophysical Research: Space Physics, 122, 12,140– 12,152. https://doi.org/10.1002/2017JA024558
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file vsmodel-2.0.0-py3-none-any.whl
.
File metadata
- Download URL: vsmodel-2.0.0-py3-none-any.whl
- Upload date:
- Size: 20.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb486b115718a2726e8289e94d16952c103f4fd7f0216806c6e58150acf992e6 |
|
MD5 | f972737ccbfda5129c8acf8857186384 |
|
BLAKE2b-256 | f09c8535edb97a2846c828775e71bb8cfe311a2b8087e229ab947c0f28f5d45e |