Skip to main content

A simple implementation of the Volland-Stern electric field model.

Project description

vsmodel

A simple implementation of the Volland-Stern electric field model (Volland, 1973; Stern, 1975).

The electric field model here is only defined in the equatorial plane around the Earth, where any vertical component returns is filled with zeros.

The implementation of this model is based on that used by Zhao et al. 2017.

Installation

Install using this Github repo:

git clone https://github.com/mattkjames7/vsmodel
cd vsmodel

then either using setup.py:

python3 setup.py install --user

or by creating a wheel:

python3 setup.py bdist_wheel
pip3 install dist/vsmodel-x.x.x-py3-none-any.whl --user

where x.x.x should be replaced with the current version number.

Alternatively, install using pip3:

pip3 install vsmodel --user

Usage

There are two functions which can be used to calculate the model electric field, one using polar coordinates and the other using the Cartesian Solar Magnetic (SM) coordinate system:

import vsmodel

#the Cartesian model
Ex,Ey,Ez = vsmodel.ModelCart(x,y,Kp)

#the polar model
Er,Et,Ep = vsmodel.ModelPol(r,phi,Kp)

where Kp is the Kp index; x and y are the Cartesian coordinates in the magnetic equatorial plane (in RE, where RE=6378 km); r and phi are the equatorial radial distance from the centre of the Earth (in RE) and the azimuthal angle (phi=0.0 at noon, in radians). Both functions return the electric field in units of mV/m

Plotting the model

The function vsmodel.PlotModelEq will plot the V-S model potential, electric field, a dipole magnetic field and the ExB velocity in the equatorial plane, e.g.:

import vsmodel
import matplotlib.pyplot as plt
plt.figure(figsize=(9,8))
ax0 = vsmodel.PlotModelEq('E',Kp=1.0,maps=[2,2,0,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax1 = vsmodel.PlotModelEq('E',Kp=5.0,maps=[2,2,1,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax2 = vsmodel.PlotModelEq('V',Kp=1.0,maps=[2,2,0,1],fig=plt,scale=[100.0,100000.0])
ax3 = vsmodel.PlotModelEq('V',Kp=5.0,maps=[2,2,1,1],fig=plt,scale=[100.0,100000.0])
ax0.set_title('$K_p=1$')
ax2.set_title('$K_p=1$')
ax3.set_title('$K_p=5$')
ax1.set_title('$K_p=5$')
plt.tight_layout()

Which should produce this:

vsexample.png

Notes on the coordinate systems

SM

The Solar Magnetic (SM) coordinate system is defined such that the z-axis is aligned with the Earth's magnetic dipole; the x-axis lies in the plane which contains both the Earth-Sun line and the dipole axis (the x-axis points close-ish towards the Sun); the y-axis completes the right-handed set and points approximately in the opposite direction to that of the Earth's orbital motion around the Sun.

As this model is defined only in the equatorial plane, there is no input for the z coordinate; also there is not a z component to the model so Ez is filled with zeros.

Polar

The polar coordinates used are defined such that r is the radial distance from the centre of the planet, theta is the polar angle (angle from the positive z-axis) and phi is the azimuthal angle. theta is not used as an input, it is assumed that theta=π in the model. The outputs Er, Et and Ep correspond to the radial, polar and azimuthal components of the model electric field. As with the Cartesian version of the model, there is no vertical component to the electric field model, so the Et component is filled with zeros.

Derivation

The derivation of the model equations can be found here - if there any mistakes, please file a bug report, thanks!

References

Maynard, N. C., and Chen, A. J. (1975), Isolated cold plasma regions: Observations and their relation to possible production mechanisms, J. Geophys. Res., 80( 7), 1009– 1013, doi:10.1029/JA080i007p01009.

Stern, D. P. (1975), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80( 4), 595– 599, doi:10.1029/JA080i004p00595.

Volland, H. (1973), A semiempirical model of large‐scale magnetospheric electric fields, J. Geophys. Res., 78( 1), 171– 180, doi:10.1029/JA078i001p00171.

Zhao, H., Baker, D. N., Califf, S., Li, X., Jaynes, A. N., Leonard, T., … Spence, H. E. (2017). Van Allen probes measurements of energetic particle deep penetration into the low L region (L < 4) during the storm on 8 April 2016. Journal of Geophysical Research: Space Physics, 122, 12,140– 12,152. https://doi.org/10.1002/2017JA024558

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

vsmodel-0.0.1-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file vsmodel-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: vsmodel-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.4

File hashes

Hashes for vsmodel-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 79396ab3bfc8ff8254f0590e0515ab5b5ad0044ff5e453dac8022ca2ff75366a
MD5 d424d92527d5e97b8af9bc1606a275e2
BLAKE2b-256 b2ce8f0343243cac144bc1f4c0c1b40369bc0688d36faff0d7fa345b39dec6bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page