Skip to main content

A lightweight package for validating JSON like Python objects

Project description

vtjson

A lightweight package for validating JSON like Python objects.

Schemas

Validation of JSON like Python objects is done according to a "schema" which is somewhat inspired by a typescript type. The format of a schema is more or less self explanatory as the following example shows.

Example

Below is the schema of the run object in the mongodb database underlying the Fishtest web application https://tests.stockfishchess.org/tests

import math
from datetime import datetime
from bson.objectid import ObjectId
from vtjson import ip_address, number, regex, url

net_name = regex("nn-[a-z0-9]{12}.nnue", name="net_name")
tc = regex(r"([1-9]\d*/)?\d+(\.\d+)?(\+\d+(\.\d+)?)?", name="tc")
str_int = regex(r"[1-9]\d*", name="str_int")
sha = regex(r"[a-f0-9]{40}", name="sha")
country_code = regex(r"[A-Z][A-Z]", name="country_code")
run_id = regex(r"[a-f0-9]{24}", name="run_id")

worker_info_schema = {
    "uname": str,
    "architecture": [str, str],
    "concurrency": int,
    "max_memory": int,
    "min_threads": int,
    "username": str,
    "version": int,
    "python_version": [int, int, int],
    "gcc_version": [int, int, int],
    "compiler": {"clang++", "g++"},
    "unique_key": str,
    "modified": bool,
    "ARCH": str,
    "nps": number,
    "near_github_api_limit": bool,
    "remote_addr": ip_address,
    "country_code": {country_code, "?"},
}

results_schema = {
    "wins": int,
    "losses": int,
    "draws": int,
    "crashes": int,
    "time_losses": int,
    "pentanomial": [int, int, int, int, int],
}

schema = {
    "_id?": ObjectId,
    "start_time": datetime,
    "last_updated": datetime,
    "tc_base": number,
    "base_same_as_master": bool,
    "results_stale?": bool,
    "rescheduled_from?": run_id,
    "approved": bool,
    "approver": str,
    "finished": bool,
    "deleted": bool,
    "failed": bool,
    "is_green": bool,
    "is_yellow": bool,
    "workers?": int,
    "cores?": int,
    "results": results_schema,
    "results_info?": {
        "style": str,
        "info": [str, ...],
    },
    "args": {
        "base_tag": str,
        "new_tag": str,
        "base_net": net_name,
        "new_net": net_name,
        "num_games": int,
        "tc": tc,
        "new_tc": tc,
        "book": str,
        "book_depth": str_int,
        "threads": int,
        "resolved_base": sha,
        "resolved_new": sha,
        "msg_base": str,
        "msg_new": str,
        "base_options": str,
        "new_options": str,
        "info": str,
        "base_signature": str_int,
        "new_signature": str_int,
        "username": str,
        "tests_repo": url,
        "auto_purge": bool,
        "throughput": number,
        "itp": number,
        "priority": number,
        "adjudication": bool,
        "sprt?": {
            "alpha": 0.05,
            "beta": 0.05,
            "elo0": number,
            "elo1": number,
            "elo_model": "normalized",
            "state": {"", "accepted", "rejected"},
            "llr": number,
            "batch_size": int,
            "lower_bound": -math.log(19),
            "upper_bound": math.log(19),
            "lost_samples?": int,
            "illegal_update?": int,
            "overshoot?": {
                "last_update": int,
                "skipped_updates": int,
                "ref0": number,
                "m0": number,
                "sq0": number,
                "ref1": number,
                "m1": number,
                "sq1": number,
            },
        },
        "spsa?": {
            "A": number,
            "alpha": number,
            "gamma": number,
            "raw_params": str,
            "iter": int,
            "num_iter": int,
            "params": [
                {
                    "name": str,
                    "start": number,
                    "min": number,
                    "max": number,
                    "c_end": number,
                    "r_end": number,
                    "c": number,
                    "a_end": number,
                    "a": number,
                    "theta": number,
                },
                ...,
            ],
            "param_history?": [
                [{"theta": number, "R": number, "c": number}, ...],
                ...,
            ],
        },
    },
    "tasks": [
        {
            "num_games": int,
            "active": bool,
            "last_updated": datetime,
            "start": int,
            "residual?": number,
            "residual_color?": str,
            "bad?": True,
            "stats": results_schema,
            "worker_info": worker_info_schema,
        },
        ...,
    ],
    "bad_tasks?": [
        {
            "num_games": int,
            "active": False,
            "last_updated": datetime,
            "start": int,
            "residual": number,
            "residual_color": str,
            "bad": True,
            "task_id": int,
            "stats": results_schema,
            "worker_info": worker_info_schema,
        },
        ...,
    ],
}

Conventions

  • As in typescript, a (string) key ending in "?" represents an optional key. The corresponding schema (the item the key points to) will only be used for validation when the key is present in the object that should be validated. A key can also be made optional by wrapping it as optional_key(key).
  • If in a list/tuple the last entry is ... (ellipsis) it means that the next to last entry will be repeated zero or more times. In this way generic types can be created. For example the schema [str, ...] represents a list of strings.

Usage

To validate an object against a schema one can simply do

validate(schema, object)

If the validation fails this will throw a ValidationError and the exception contains an explanation about what went wrong. The full signature of validate is

validate(schema, object, name="object", strict=True)
  • The optional name argument is used to refer to the object being validated in the returned message.
  • The optional argument strict indicates whether or not the object being validated is allowed to have keys/entries which are not in the schema.

Wrappers

A wrapper takes one or more schemas as arguments and produces a new schema.

  • An object matches the schema union(schema1, ..., schemaN) if it matches one of the schemas schema1, ..., schemaN. This is almost the same as {schema1, ..., schemaN}, or equivalently set(schema1, ..., schemaN).
  • An object matches the schema intersect(schema1, ..., schemaN) if it matches all the schemas schema1, ..., schemaN.
  • An object matches the schema complement(schema) if it does not match schema.
  • An object matches the schema lax(schema) when it matches schema with strict=False, see below.
  • An object matches the schema strict(schema) when it matches schema with strict=True, see below.
  • An object matches the schema set_name(schema, name) when it matches schema. But the name argument will be used in non-validation messages.

Built-ins

  • regex(pattern, name=None, fullmatch=True, flags=0). This matches the strings which match the given pattern. The optional name argument may be used to give the regular expression a descriptive name. By default the entire string is matched, but this can be overruled via the fullmatch argument. The flags argument has the usual meaning.
  • interval(lowerbound, upperbound). This checks if lowerbound <= object <= upperbound, provided the comparisons make sense. An upper/lowerbound ... (ellipsis) means that the corresponding inequality is not checked.
  • number. Matches int and float.
  • email. Checks if the object is a valid email address. This uses the package email_validator. The email schema accepts the same options as validate_email in loc. cit.
  • ip_address and url. These are similar to email.
  • date. Without argument this represents an ISO 8601 date. An argument corresponds to a format string for strftime.

Format

A schema can be, in order of precedence:

  • An object having a __validate__ attribute with signature
    __validate__(object, name, strict)
    
    This is for example how the wrapper schemas are implemented internally. The parameters of __validate__() have the same semantics as those of validate(). The return value of __validate__() should be the empty string if validation succeeds, and otherwise it should be an explanation about what went wrong.
  • A Python type. In that case validation is done by checking membership.
  • A callable. Validation is done by applying the callable to the object.
  • A list or a tuple. Validation is done by first checking membership of the corresponding types, and then performing validation for each of the entries of the object being validated against the corresponding entries of the schema.
  • A dictionary. Validation is done by first checking membership of the dict type, and then performing validation for each of the items of the object being validated against the corresponding items of the schema.
  • A set. A set validates an object, if one of its members does.
  • An arbitrary Python object. Validation is done by checking equality of the schema and the object, except when the schema is of type float, in which case math.isclose is used.

Creating types

A cool feature of vtjson is that one can transform a schema into a genuine Python type via

t = make_type(schema)

so that validation can be done via

isinstance(object, t)

The drawback, compared to using validate directly, is that there is no feedback when validation fails. You can get it back as a console debug message via the optional debug argument to make_type. The full signature of make_type is

make_type(schema, name=None, strict=True, debug=False)

The optional name argument is used to set the __name__ attribute of the type. If it is not supplied then vtjson tries to make an educated guess.

Examples

>>> from vtjson import set_name, validate
>>> schema = {"fruit" : {"apple", "pear", "strawberry"}, "price" : float}
>>> object = {"fruit" : "dog", "price": 1.0 }
>>> validate(schema, object)
...
vtjson.ValidationError: object['fruit'] (value:'dog') is not equal to 'pear' and object['fruit'] (value:'dog') is not equal to 'strawberry' and object['fruit'] (value:'dog') is not equal to 'apple'
>>> fruit = set_name({"apple", "pear", "strawberry"}, "fruit")
>>> schema = {"fruit" : fruit, "price" : float}
>>> validate(schema, object)
...
vtjson.ValidationError: object['fruit'] (value: 'dog') is not of type 'fruit'
>>> object = {"fruit" : "apple"}
>>> validate(schema, object)
...
vtjson.ValidationError: object['price'] is missing

For many more examples see the file test_validate.py in the source distribution.

FAQ

Q: Why not just use jsonschema?

A: vtjson can validate objects which are more general than strictly JSON. See the example above. But the main reason for the existence of vtjson is that it is easily extensible in a Pythonic way.

Q: How is this different from https://pypi.org/project/json-checker/ ?

A: Good question! I discovered json-checker after I had written vtjson. Although the details are different json-checker and vtjson share many of the same principles.

Q: How to combine validations?

A: Use intersect. For example the following schema validates positive integers.

schema = intersect(int, interval(0, ...))

(but rejects positive floats). More generally one can use the pattern intersect(schema, more_validations) where the first argument makes sure that the object to be validated has the required layout to be an acceptable input for the following arguments. For example an ordered pair of integers can be validated using the schema

def ordered_pair(o):
    return o[0] <= o[1]
schema = intersect((int, int), ordered_pair)

Or in a one liner

schema = intersect((int, int), set_name(lambda o: o[0] <= o[1], "ordered_pair"))

The following also works if you are content with less nice output on validation failure (try it)

schema = intersect((int, int), lambda o: o[0] <= o[1])

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vtjson-1.1.11.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

vtjson-1.1.11-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file vtjson-1.1.11.tar.gz.

File metadata

  • Download URL: vtjson-1.1.11.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for vtjson-1.1.11.tar.gz
Algorithm Hash digest
SHA256 ce3664d92e523a2d1e185ce1128d83dad2406c0f163c2dd26e10b81ed5f57e03
MD5 9c9c6e4790908cdff9b1876699d7c781
BLAKE2b-256 4edf9e03e4f470312209043c1e2dce4a2dcede3ae19d07ce7beaf765349641a7

See more details on using hashes here.

File details

Details for the file vtjson-1.1.11-py3-none-any.whl.

File metadata

  • Download URL: vtjson-1.1.11-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for vtjson-1.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 8927e996ddafdc4eb3c49ddd32c06bdedfe2706005b4b13054db86648476de80
MD5 644708f427de8f0b9fd855ce5d4169d6
BLAKE2b-256 6a81c8fd37239852822e1b9039c74a486f52962a065acd6946770c70b3c2e8a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page