Skip to main content

https://vyperdatum.readthedocs.io/en/latest/

Project description


PyPI version DOI Read the Docs

Vyperdatum

Vyperdatum [definition]

Installation

Vyperdatum requires GDAL which can be installed from the conda's conda-forge channel. Below, we first create a conda environment, install GDAL and Vperdatum.

conda create -n vd python=3.11
conda activate vd
conda install -c conda-forge gdal=3.8.4
pip install vyperdatum

Usage

Vyperdatum offers a Transformer class to handle the transformation of point and raster data. The Transformer class applies transformation from crs_from to crs_to coordinate reference systems. The transformation steps can be prescribed manually or let the Pipeline class to infer:

from vyperdatum.transformer import Transformer
from vyperdatum.pipeline import Pipeline

crs_from = "EPSG:6346"
crs_to = "EPSG:6346+NOAA:5224"
tf = Transformer(crs_from=crs_from,
                 crs_to=crs_to,
                 steps=["EPSG:6346", "EPSG:6319", "EPSG:6318+NOAA:5224", "EPSG:6346+NOAA:5224"]
                 #  steps=Pipeline(crs_from=crs_from, crs_to=crs_to).linear_steps()
                 #  steps=Pipeline(crs_from=crs_from, crs_to=crs_to).graph_steps()                 
                 )

Once an instance of the Transformer class is created, raster or point transformation methods can be called.

raster transform

tf.transform_raster(input_file=<PATH_TO_INPUT_RASTER_FILE>,
                    output_file=<PATH_TO_OUTPUT_RASTER_FILE>
                    )

point transform

# random values
x, y, z = 278881.198, 2719890.433, 0
xt, yt, zt = tf.transform_points(x, y, z, always_xy=True, allow_ballpark=False)

Vyperdatum Transformer class offers a few methods to support file formats that are not supported by GDAL, such as Variable Resolution BAG, and LAZ point cloud data.

VRBAG Transform

input_file = "PATH_TO_INPUT_VRBAG.bag"
output_file = "PATH_TO_OUTPUT_VRBAG.bag"
tf.transform_vrbag(input_file=input_file, output_file=output_file)

LAZ Transform

input_file = "PATH_TO_INPUT_LAZ.laz"
output_file = "PATH_TO_OUTPUT_LAZ.laz"
tf.transform_laz(input_file=input_file, output_file=output_file)

Documentation

For a quick start, more detailed descriptions or search through the API, see Vyperdatums's documentation at: https://vyperdatum.readthedocs.io.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vyperdatum-0.3.5.tar.gz (52.6 kB view details)

Uploaded Source

Built Distribution

vyperdatum-0.3.5-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file vyperdatum-0.3.5.tar.gz.

File metadata

  • Download URL: vyperdatum-0.3.5.tar.gz
  • Upload date:
  • Size: 52.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for vyperdatum-0.3.5.tar.gz
Algorithm Hash digest
SHA256 5be1c0b925fcca5e5bebb98ccb6242e74d78a0982c5e42b0b6371864cd5523fb
MD5 bda2edfc333b78953907860f0cc741d8
BLAKE2b-256 92487ce3082cb18decd7309ee8a3870774b4ac4e80a31ca145597a3ff6c7915d

See more details on using hashes here.

File details

Details for the file vyperdatum-0.3.5-py3-none-any.whl.

File metadata

  • Download URL: vyperdatum-0.3.5-py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for vyperdatum-0.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 1fc3917d27b6a3494f01365a4ed49d87298c17dd2cd5fbf2cf1e705440acb3a6
MD5 9212472aa526e93d2d76e7e111b4a540
BLAKE2b-256 367b161012ef697304561583c54e45e165bad2fbbf92e38acac558e442a89297

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page