Skip to main content

https://vyperdatum.readthedocs.io/en/latest/

Project description


PyPI version DOI Read the Docs

Vyperdatum

Vyperdatum [definition]

Installation

Vyperdatum requires GDAL which can be installed from the conda's conda-forge channel. Below, we first create a conda environment, install GDAL and Vperdatum.

conda create -n vd python=3.11
conda activate vd
conda install -c conda-forge gdal=3.8.4
pip install vyperdatum

Usage

Vyperdatum offers a Transformer class to handle the transformation of point and raster data. The Transformer class applies transformation from crs_from to crs_to coordinate reference systems. The transformation steps can be prescribed manually or let the Pipeline class to infer:

from vyperdatum.transformer import Transformer
from vyperdatum.pipeline import Pipeline

crs_from = "EPSG:6346"
crs_to = "EPSG:6346+NOAA:5224"
tf = Transformer(crs_from=crs_from,
                 crs_to=crs_to,
                 steps=["EPSG:6346", "EPSG:6319", "EPSG:6318+NOAA:5224", "EPSG:6346+NOAA:5224"]
                 #  steps=Pipeline(crs_from=crs_from, crs_to=crs_to).linear_steps()
                 #  steps=Pipeline(crs_from=crs_from, crs_to=crs_to).graph_steps()                 
                 )

Once an instance of the Transformer class is created, raster or point transformation methods can be called.

raster transform

tf.transform_raster(input_file=<PATH_TO_INPUT_RASTER_FILE>,
                    output_file=<PATH_TO_OUTPUT_RASTER_FILE>
                    )

point transform

# random values
x, y, z = 278881.198, 2719890.433, 0
xt, yt, zt = tf.transform_points(x, y, z, always_xy=True, allow_ballpark=False)

Vyperdatum Transformer class offers a few methods to support file formats that are not supported by GDAL, such as Variable Resolution BAG, and LAZ point cloud data.

VRBAG Transform

input_file = "PATH_TO_INPUT_VRBAG.bag"
output_file = "PATH_TO_OUTPUT_VRBAG.bag"
tf.transform_vrbag(input_file=input_file, output_file=output_file)

LAZ Transform

input_file = "PATH_TO_INPUT_LAZ.laz"
output_file = "PATH_TO_OUTPUT_LAZ.laz"
tf.transform_laz(input_file=input_file, output_file=output_file)

Documentation

For a quick start, more detailed descriptions or search through the API, see Vyperdatums's documentation at: https://vyperdatum.readthedocs.io.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vyperdatum-0.3.7.tar.gz (52.6 kB view details)

Uploaded Source

Built Distribution

vyperdatum-0.3.7-py3-none-any.whl (55.2 kB view details)

Uploaded Python 3

File details

Details for the file vyperdatum-0.3.7.tar.gz.

File metadata

  • Download URL: vyperdatum-0.3.7.tar.gz
  • Upload date:
  • Size: 52.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for vyperdatum-0.3.7.tar.gz
Algorithm Hash digest
SHA256 afdd060e4cfb7abaebb09d9d0e50e43bb9ecce96c601d464cf41c599a843f9d2
MD5 87b23798ce78b7547440df51b630e2c6
BLAKE2b-256 14cbb4ea97b28f4eebab36b3ebb0c9145d731e3f8d83c75707c859bd5d952422

See more details on using hashes here.

File details

Details for the file vyperdatum-0.3.7-py3-none-any.whl.

File metadata

  • Download URL: vyperdatum-0.3.7-py3-none-any.whl
  • Upload date:
  • Size: 55.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for vyperdatum-0.3.7-py3-none-any.whl
Algorithm Hash digest
SHA256 1d0dbca5b7cfd3d54c46a2c7abc9954fbe0ad16a34a0cde0c9104d684b33caca
MD5 fa0edbcb6a0ea0902ee91700ed608741
BLAKE2b-256 5d644979a60e1d4bb64ee10cda01769e73c3ec2829bb2a6841aa4788d50c5efa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page