Skip to main content

https://vyperdatum.readthedocs.io/en/latest/

Project description


PyPI version DOI Read the Docs

Vyperdatum

Vyperdatum [definition]

Installation

Vyperdatum requires GDAL which can be installed from the conda's conda-forge channel. Below, we first create a conda environment, install GDAL and Vperdatum.

conda create -n vd python=3.11
conda activate vd
conda install -c conda-forge gdal=3.8.4
pip install vyperdatum

Before running vyperdatum, you need to copy NOAA's datum files and the updated proj.db into the PROJ data directory [download link will be added here]. This process may get automated in the future. The Proj data directory path can be found here:

import pyproj as pp
pp.datadir.get_data_dir()

Usage

Vyperdatum offers a Transformer class to handle the transformation of point and raster data. The Transformer class applies transformation from crs_from to crs_to coordinate reference systems. The transformation steps can be prescribed manually or let the Pipeline class to infer:

from vyperdatum.transformer import Transformer
from vyperdatum.pipeline import Pipeline

crs_from = "EPSG:6346"
crs_to = "EPSG:6346+NOAA:5224"
tf = Transformer(crs_from=crs_from,
                 crs_to=crs_to,
                 steps=["EPSG:6346", "EPSG:6319", "EPSG:6318+NOAA:5224", "EPSG:6346+NOAA:5224"]
                 #  steps=Pipeline(crs_from=crs_from, crs_to=crs_to).linear_steps()
                 #  steps=Pipeline(crs_from=crs_from, crs_to=crs_to).graph_steps()                 
                 )

Once an instance of the Transformer class is created, raster or point transformation methods can be called.

raster transform

tf.transform_raster(input_file=<PATH_TO_INPUT_RASTER_FILE>,
                    output_file=<PATH_TO_OUTPUT_RASTER_FILE>
                    )

point transform

# random values
x, y, z = 278881.198, 2719890.433, 0
xt, yt, zt = tf.transform_points(x, y, z, always_xy=True, allow_ballpark=False)

Vyperdatum Transformer class offers a few methods to support file formats that are not supported by GDAL, such as Variable Resolution BAG, and LAZ point cloud data.

VRBAG Transform

input_file = "PATH_TO_INPUT_VRBAG.bag"
output_file = "PATH_TO_OUTPUT_VRBAG.bag"
tf.transform_vrbag(input_file=input_file, output_file=output_file)

LAZ Transform

input_file = "PATH_TO_INPUT_LAZ.laz"
output_file = "PATH_TO_OUTPUT_LAZ.laz"
tf.transform_laz(input_file=input_file, output_file=output_file)

Documentation

For a quick start, more detailed descriptions or search through the API, see Vyperdatums's documentation at: https://vyperdatum.readthedocs.io.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vyperdatum-0.3.8.tar.gz (52.9 kB view details)

Uploaded Source

Built Distribution

vyperdatum-0.3.8-py3-none-any.whl (55.2 kB view details)

Uploaded Python 3

File details

Details for the file vyperdatum-0.3.8.tar.gz.

File metadata

  • Download URL: vyperdatum-0.3.8.tar.gz
  • Upload date:
  • Size: 52.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for vyperdatum-0.3.8.tar.gz
Algorithm Hash digest
SHA256 31021f7f393ee558e66ad7dd288335151dbe99a6971c35a90050d6034741a2fe
MD5 228b203edaa37561fd75d05c3195a8f4
BLAKE2b-256 8a0d76c81efeafa2f393bcca787949ac221760eb085c6ccb1fb7ce152907854c

See more details on using hashes here.

File details

Details for the file vyperdatum-0.3.8-py3-none-any.whl.

File metadata

  • Download URL: vyperdatum-0.3.8-py3-none-any.whl
  • Upload date:
  • Size: 55.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for vyperdatum-0.3.8-py3-none-any.whl
Algorithm Hash digest
SHA256 434180dfaa69b763fb0c00fd309bdd30ab6fe4bd618902a8a8d17cc949ec30ac
MD5 2a199fb13463d7d196b30c814381b6ce
BLAKE2b-256 4df3ab92dcfd9539f9e1f30d670f9a36ee7f2aa35dbba7ebc4a23989bec78456

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page