Skip to main content

https://vyperdatum.readthedocs.io/en/latest/

Project description


PyPI version DOI Read the Docs

Vyperdatum

Vyperdatum [definition]

Installation

Vyperdatum requires GDAL which can be installed from the conda's conda-forge channel. Below, we first create a conda environment, install GDAL and Vperdatum.

conda create -n vd python=3.11
conda activate vd
conda install -c conda-forge gdal=3.8.4
pip install vyperdatum

Before running vyperdatum, you need to copy NOAA's datum files and the updated proj.db into the PROJ data directory [download link will be added here]. This process may get automated in the future. The Proj data directory path can be found here:

import pyproj as pp
pp.datadir.get_data_dir()

Usage

Vyperdatum offers a Transformer class to handle the transformation of point and raster data. The Transformer class applies transformation from crs_from to crs_to coordinate reference systems. The transformation steps can be prescribed manually or let the Pipeline class to infer:

from vyperdatum.transformer import Transformer
from vyperdatum.pipeline import Pipeline

crs_from = "EPSG:6346"
crs_to = "EPSG:6346+NOAA:5224"
tf = Transformer(crs_from=crs_from,
                 crs_to=crs_to,
                 steps=["EPSG:6346", "EPSG:6319", "EPSG:6318+NOAA:5224", "EPSG:6346+NOAA:5224"]
                 #  steps=Pipeline(crs_from=crs_from, crs_to=crs_to).transformation_steps()
                 )

Once an instance of the Transformer class is created, the transform() method can be called. Vyperdatum supports all GDAL-supported drivers, variable resolution BAG, LAZ and NPZ point-cloud files.

transform

tf.transform(input_file=<PATH_TO_INPUT_RASTER_FILE>,
             output_file=<PATH_TO_OUTPUT_RASTER_FILE>
             )

You may also, directly call the file-specific transform methods instead of the generic Transformer.transform() method:

Click to see pseudo-code examples
# dircet point transformation. x, y, z can be arrays, too.
x, y, z = 278881.198, 2719890.433, 0
xt, yt, zt = tf.transform_points(x, y, z, always_xy=True, allow_ballpark=False)

# GDAL-supported raster transform  
tf.transform_raster(input_file=<PATH_TO_INPUT_RASTER_FILE>,
                    output_file=<PATH_TO_OUTPUT_RASTER_FILE>
                    )

# VRBAG transform
tf.transform_vrbag(input_file=<PATH_TO_INPUT_VRBAG_FILE>,
                   output_file=<PATH_TO_OUTPUT_VRBAG_FILE>
                   )

# LAZ transform
tf.transform_laz(input_file=<PATH_TO_INPUT_LAZ_FILE>,
                 output_file=<PATH_TO_OUTPUT_LAZ_FILE>
                 )

# NPZ transform
tf.transform_npz(input_file=<PATH_TO_INPUT_NPZ_FILE>,
                 output_file=<PATH_TO_OUTPUT_NPZ_FILE>
                 )

Documentation

For a quick start, more detailed descriptions or search through the API, see Vyperdatums's documentation at: https://vyperdatum.readthedocs.io.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vyperdatum-0.3.9.tar.gz (54.3 kB view details)

Uploaded Source

Built Distribution

vyperdatum-0.3.9-py3-none-any.whl (56.3 kB view details)

Uploaded Python 3

File details

Details for the file vyperdatum-0.3.9.tar.gz.

File metadata

  • Download URL: vyperdatum-0.3.9.tar.gz
  • Upload date:
  • Size: 54.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for vyperdatum-0.3.9.tar.gz
Algorithm Hash digest
SHA256 132639fc6b330d45f79d4f90f61aefdccc961361e70089837103eca165850f1f
MD5 e6064542203fba3dcfaf668fa980675e
BLAKE2b-256 c21cb668035072d3377566db722c05190dbd976ac63272051a37c1a62ab0a6ee

See more details on using hashes here.

File details

Details for the file vyperdatum-0.3.9-py3-none-any.whl.

File metadata

  • Download URL: vyperdatum-0.3.9-py3-none-any.whl
  • Upload date:
  • Size: 56.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for vyperdatum-0.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 e14822cee163dc33989b31504d49774129d38cd8dd6c097ca567eccfbca97cc1
MD5 f3345d2b1a14b1a2b7e83082f143a6b7
BLAKE2b-256 2c93192fed20229d29bc29f90e2e17e286d7a51f1b9778b8fb6591d90c70ddf5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page