Skip to main content

a library so simple you will learn Within An Hour

Project description

logo

Install

pip install wah

Requirements

You might want to manually install PyTorch for GPU computation.

lightning
matplotlib
numpy
pandas
pyperclip
PyYAML
selenium
tensorboard
timm
torch
torchaudio
torchmetrics
torchvision
webdriver_manager

Examples

Structure

classification

  • attacks
    • fgsm: FGSM, IFGSM
  • datasets
    • base: ClassificationDataset
    • cifar10: CIFAR10
    • cifar100: CIFAR100
    • dataloader
      • __init__: to_dataloader
      • transforms: CollateFunction
    • imagenet: ImageNet
    • stl10: STL10
    • utils: compute_mean_and_std, DeNormalize, Normalize, portion_dataset, tensor_to_dataset
  • models
    • feature_extraction: FeatureExtractor
    • load: add_preprocess, load_model, load_state_dict
    • replace:
      • __init__: Replacer
  • test
    • accuracy: AccuracyTest
    • eval: EvalTest
    • hessian_max_eigval_spectrum: HessianMaxEigValSpectrum
    • loss: LossTest
    • pred: PredTest
    • tid: TIDTest
  • train
    • plot: proj_train_path_to_2d, TrainPathPlot2D
    • train: Wrapper, load_trainer

module

_getattr, get_attrs, get_module_name, get_module_params, get_named_modules, get_valid_attr

np

path

basename, clean, dirname, exists, isdir, join, ls, mkdir, rmdir, rmfile, split, splitext

plot

  • dist: DistPlot2D
  • hist: HistPlot2D
  • image: ImShow
  • mat: MatShow2D
  • quiver: QuiverPlot2D, TrajPlot2D
  • scatter: GridPlot2D, ScatterPlot2D

riemann

  • geodesic: optimize_geodesic
  • grad: compute_jacobian, compute_hessian
  • jacobian_sigvals: JacobianSigVals

tensor

broadcasted_elementwise_mul, create_1d_traj, create_2d_grid, flatten_batch, repeat, stretch

torch

utils

  • args: ArgumentParser
  • dictionary: dict_to_df, dict_to_tensor, load_csv_to_dict, load_yaml_to_dict, save_dict_to_csv
  • download: disable_ssl_verification, download_url, md5_check
  • logs: disable_lightning_logging
  • lst: load_txt_to_list, save_list_to_txt, sort_str_list
  • random: seed, unseed
  • time: time
  • zip: extract

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wah-1.8.16.tar.gz (224.5 kB view details)

Uploaded Source

File details

Details for the file wah-1.8.16.tar.gz.

File metadata

  • Download URL: wah-1.8.16.tar.gz
  • Upload date:
  • Size: 224.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.20

File hashes

Hashes for wah-1.8.16.tar.gz
Algorithm Hash digest
SHA256 d709233eb56af80c1c3f1f70ea59eec31a1e0545abf4aa78f3776d2b23ba698d
MD5 3bb75a70a9e2b1b5a717a72d54682d3e
BLAKE2b-256 3f0691ee8072a5ff8c10fa96c9b0ffde503fe1d14ed565314c007434548be078

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page