Skip to main content

a library so simple you will learn Within An Hour

Project description

logo

Install

pip install wah

Requirements

You might want to manually install PyTorch for GPU computation.

lightning
matplotlib
numpy
pandas
pyperclip
PyYAML
selenium
tensorboard
timm
torch
torchaudio
torchmetrics
torchvision
webdriver_manager

Examples

Structure

classification

  • attacks
    • fgsm: FGSM, IFGSM
  • datasets
    • base: ClassificationDataset
    • cifar10: CIFAR10
    • cifar100: CIFAR100
    • dataloader
      • __init__: to_dataloader
      • transforms: CollateFunction
    • imagenet: ImageNet
    • stl10: STL10
    • utils: compute_mean_and_std, DeNormalize, Normalize, portion_dataset, tensor_to_dataset
  • models
    • feature_extraction: FeatureExtractor
    • load: add_preprocess, load_model, load_state_dict
    • replace:
      • __init__: Replacer
  • test
    • accuracy: AccuracyTest
    • eval: EvalTest
    • hessian_max_eigval_spectrum: HessianMaxEigValSpectrum
    • loss: LossTest
    • pred: PredTest
    • tid: TIDTest
  • train
    • plot: proj_train_path_to_2d, TrainPathPlot2D
    • train: Wrapper, load_trainer

module

_getattr, get_attrs, get_module_name, get_module_params, get_named_modules, get_valid_attr

np

path

basename, clean, dirname, exists, isdir, join, ls, mkdir, rmdir, rmfile, split, splitext

plot

  • dist: DistPlot2D
  • hist: HistPlot2D
  • image: ImShow
  • mat: MatShow2D
  • quiver: QuiverPlot2D, TrajPlot2D
  • scatter: GridPlot2D, ScatterPlot2D

riemann

  • geodesic: optimize_geodesic
  • grad: compute_jacobian, compute_hessian
  • jacobian_sigvals: JacobianSigVals

tensor

broadcasted_elementwise_mul, create_1d_traj, create_2d_grid, flatten_batch, repeat, stretch

torch

utils

  • args: ArgumentParser
  • dictionary: dict_to_df, dict_to_tensor, load_csv_to_dict, load_yaml_to_dict, save_dict_to_csv
  • download: disable_ssl_verification, download_url, md5_check
  • logs: disable_lightning_logging
  • lst: load_txt_to_list, save_list_to_txt, sort_str_list
  • random: seed, unseed
  • time: time
  • zip: extract

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wah-1.8.13.tar.gz (223.4 kB view details)

Uploaded Source

File details

Details for the file wah-1.8.13.tar.gz.

File metadata

  • Download URL: wah-1.8.13.tar.gz
  • Upload date:
  • Size: 223.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.20

File hashes

Hashes for wah-1.8.13.tar.gz
Algorithm Hash digest
SHA256 7e44a291c596c4aa157a367c8fcf2009f5e5c37dde05b61e6da29d92dc2f16f9
MD5 d46d98f0d6698f294ee5920b5a5cc078
BLAKE2b-256 c5a0b3cb3e4955e96e04e52eed121aa4752e29218fcd67c3bb0b2d428708b99a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page