Skip to main content

a library so simple you will learn Within An Hour

Project description

logo

Install

pip install wah

Requirements

You might want to manually install PyTorch for GPU computation.

lightning
matplotlib
numpy
pandas
pyperclip
PyYAML
selenium
tensorboard
timm
torch
torchaudio
torchmetrics
torchvision
webdriver_manager

Examples

Structure

classification

  • attacks
    • fgsm: FGSM, IFGSM
  • datasets
    • base: ClassificationDataset
    • cifar10: CIFAR10
    • cifar100: CIFAR100
    • dataloader
      • __init__: to_dataloader
      • transforms: CollateFunction
    • imagenet: ImageNet
    • stl10: STL10
    • utils: compute_mean_and_std, DeNormalize, Normalize, portion_dataset, tensor_to_dataset
  • models
    • feature_extraction: FeatureExtractor
    • load: add_preprocess, load_model, load_state_dict
    • replace:
      • __init__: Replacer
  • test
    • accuracy: AccuracyTest
    • eval: EvalTest
    • hessian_max_eigval_spectrum: HessianMaxEigValSpectrum
    • loss: LossTest
    • pred: PredTest
    • tid: TIDTest
  • train
    • plot: proj_train_path_to_2d, TrainPathPlot2D
    • train: Wrapper, load_trainer

module

_getattr, get_attrs, get_module_name, get_module_params, get_named_modules, get_valid_attr

np

path

basename, clean, dirname, exists, isdir, join, ls, mkdir, rmdir, rmfile, split, splitext

plot

  • dist: DistPlot2D
  • hist: HistPlot2D
  • image: ImShow
  • mat: MatShow2D
  • quiver: QuiverPlot2D, TrajPlot2D
  • scatter: GridPlot2D, ScatterPlot2D

riemann

  • geodesic: optimize_geodesic
  • grad: compute_jacobian, compute_hessian
  • jacobian_sigvals: JacobianSigVals

tensor

broadcasted_elementwise_mul, create_1d_traj, create_2d_grid, flatten_batch, repeat, stretch

torch

utils

  • args: ArgumentParser
  • dictionary: dict_to_df, dict_to_tensor, load_csv_to_dict, load_yaml_to_dict, save_dict_to_csv
  • download: disable_ssl_verification, download_url, md5_check
  • logs: disable_lightning_logging
  • lst: load_txt_to_list, save_list_to_txt, sort_str_list
  • random: seed, unseed
  • time: time
  • zip: extract

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wah-1.8.14.tar.gz (223.4 kB view details)

Uploaded Source

File details

Details for the file wah-1.8.14.tar.gz.

File metadata

  • Download URL: wah-1.8.14.tar.gz
  • Upload date:
  • Size: 223.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.20

File hashes

Hashes for wah-1.8.14.tar.gz
Algorithm Hash digest
SHA256 51784c430b4c32378270684158a944f6102c1a06d6f5254a9a56b4eb741a4537
MD5 37ac755af717d05da1adb16b0ad82b3b
BLAKE2b-256 be731b6aa17fcd986ec2a1b1791c06767d4f6c1ca0f4fc2a5c92bf54aafb46ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page